Regression
Least Square Method: Regression of y on x is $y=a+b x$ The normal equations are

$$
\begin{aligned}
& \sum y=n a+b \sum x \\
& \sum x y=a \sum x+b \sum x^{2}
\end{aligned}
$$

Pbs.
Find regression of y on x for the following

data. | x | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y | 10 | 12 | 15 | 14 | 15 |

x	y	$x y$	x^{2}
1	10	10	1
2	12	24	4
3	15	45	9
4	14	56	16
5	15	75	25
15	66	210	55

$$
\begin{gathered}
\sum y=n a+b \sum x \Rightarrow 66=5 a+15 b \rightarrow(1) \\
\sum x y=a \sum x+b \sum x^{2} \Rightarrow 210=15 a+55 b \rightarrow(2) \\
(1) \times 3 \Rightarrow \frac{198=715 a+45 b}{12}=10 b \\
b=\frac{12}{10}=1.2 \\
(1) \Rightarrow 5 a+15 b=66 \\
5 a+15(1.2)=66 \\
5 a+(8=66 \\
5 a=66-18=48
\end{gathered}
$$

Regression of y on x is $y=a+b x$ $a=48 / 5=9.6$

$$
y=9.6+1.2 x
$$

The regression equation of x on y is $x=a^{\prime}+b^{\prime} y$, where the normal equations are $\Sigma x=n a^{\prime}+b^{\prime} \Sigma y$ and

$$
\sum x y=a^{\prime} \Sigma y+b^{\prime} \sum y^{2}
$$

Regression of y on x is

$$
y-\bar{y}=r \frac{x}{}=r \text { is }(x-\bar{x})
$$

$y-\bar{y}=b_{y x}(x-\bar{x})$, where $b_{y x} \rightarrow$ regression coefficient

$$
\begin{aligned}
\text { by }_{x} & =r \frac{\sigma y}{\sigma x} \\
& =\frac{\sum x y-\frac{\Sigma x \Sigma y}{\sum x^{2}}-\frac{(\Sigma x)^{2}}{n}}{}
\end{aligned}
$$

Regression of x on y is

$$
x-\bar{x}=r \frac{\sigma_{x}}{\sigma_{y}}(y-\bar{y})
$$

$$
\begin{aligned}
x-\bar{x}=b_{x y}(y-\bar{y}), \quad b_{x y} & =r \frac{\sigma_{x}}{\sigma_{y}} \\
& =\frac{\sum x y-\frac{\sum x \sum y}{n}}{\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}}
\end{aligned}
$$

Pbm Find the two regression equations when $\bar{x}=15$ $\bar{y}=20, b_{y x}=0.3, b_{x y}=0.7$
Regression equation of y on x is

$$
\begin{gathered}
y-\bar{y}=b_{y x}(x-\bar{x}) \\
y-20=0.3(x-15) \\
y-20=0.3 x-4.5 \\
y=0.3 x-4.5+20 \\
y=0.3 x+15.5
\end{gathered}
$$

Regression equation of x on y is

$$
\begin{aligned}
x-\bar{x} & =b_{x y}(y-\bar{y}) \\
x-15 & =0.7(y-20) \\
& =0.7 y-14 \\
& =0.7 y-14+15 \\
x & =0.7 y+1
\end{aligned}
$$

$P b m$ Find the regression of y on x for the following $\begin{array}{ll}\text { data } \\ \text { Estimate }\end{array}=10, \bar{x}=30, \bar{y}=50, \quad \sigma_{x}=4, \sigma_{y}=5, r_{x y}=0.7$ Estimate y when $x=37$.
Regression of y on x is

$$
\begin{aligned}
y-\bar{y} & =r \frac{\sigma_{y}}{\sigma_{x}}(x-\bar{x}) \\
y-50 & =0.7\left(\frac{5}{4}\right)(x-30) \\
& =0.875(x-30) \\
y-50 & =0.875 x-26.25 \\
y & =0.875 x-26.25+50 \\
y & =0.875 x+23.75
\end{aligned}
$$

When $x=37, y=0.875(37)+23.75=32.375+23.75$

$$
=56.125
$$

Pbs. Following data is available for 15 students regarding the time spent in studies everyday and percentage marks in an examination. Find the expected percentage when a student studies for 3.5 hours every day.

	Time (hr) x	Percentage y
Average	$x=4$	$\bar{y}=90$
SD	$\sigma_{x}=0.5$	$\sigma_{y}=7$
coefficient of correlation.	$r=0.55$	

Regression of y on x is
When $x=3.5$

$$
\begin{aligned}
y & =7.7(3.5)+59.2 \\
& =26.95+59.2 \\
& =86.15
\end{aligned}
$$

$$
\begin{aligned}
y-\bar{y} & =r \frac{\sigma_{y}}{\sigma_{x}}(x-\bar{x}) \\
y-90 & =0.55\left(\frac{7}{0.5}\right)(x-4) \\
& =7.7(x-4) \\
y-90 & =7.7 x-30.8 \\
y & =7.7 x-30.8+90 \\
& =7.7 x+59.2
\end{aligned}
$$

Find the two regression equations given the following data.

$$
\bar{x}=70, \quad \bar{y}=80
$$

Regression coefficient of y on $x=1.5=b_{y x}$
Regression coefficient of x on $y=0.6=b_{x y}$
sol:
Given, $\bar{x}=70, \bar{y}=80, b_{y x}=1.5, b_{x u}=0.6$
Regression of y on x is $\left\lvert\, \begin{gathered}\text { Regression of } x \text { on } y \text { is } \\ x-\bar{x}=b_{x} y(y-\bar{y})\end{gathered}\right.$ is

$$
\begin{aligned}
y-\frac{y}{y} & =b_{y_{x}}(x-\bar{x}) \\
y-80 & =1.5(x-70) \\
& =15 x-105 \\
y & =1.5 x-105+80 \\
y & =1.5 x-25
\end{aligned}
$$

$$
\begin{aligned}
x-\bar{x} & =b_{x y}(y-\bar{y}) \\
x-10 & =0.6(y-80) \\
& =0.6 y-48 \\
x & =0.6 y-48+70 \\
x & =0.6 y+22
\end{aligned}
$$

Pbm Find the regression equation of y on x when

$$
\sum x=420, \sum y=1922, \sum x y=84541, \sum x^{2}=18228, \quad n=10
$$

regression equation of y on x is $y-\bar{y}=b_{y x}(x-\bar{x})$

$$
\begin{aligned}
b_{y x} & =\frac{\sum x y-\frac{\sum x \sum y}{n}}{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}} \\
& =\frac{84541-\frac{(420)(1922)}{10}}{18228-\frac{(420)^{2}}{10}}=\frac{84541-80724}{18228-17640} \\
& =\frac{3817}{588}=6.49
\end{aligned}
$$

regression equation of y on x is $y-\bar{y}=b_{y x}(x-\bar{x})$

$$
\begin{aligned}
& \bar{y}=\frac{\sum y}{n}=\frac{1922}{10}=192.2 \\
& \begin{aligned}
\bar{x}=\frac{\sum x}{n}=\frac{420}{10}=42
\end{aligned} \left\lvert\, \begin{aligned}
y-192.2 & =6.49 x-292.2=6.49(x-42) \\
y & =6.49 x-272.64+192.2 \\
& =6.49 x-80.44
\end{aligned}\right.
\end{aligned}
$$

The following data give the number of years in the pit and the daily earnings of 10 miners

Find the regression of doily earnings on the no of years in the pit.
TF: Regression of y on x.

$$
\begin{aligned}
y-\bar{y}=b_{y x}(x-\bar{x}), \bar{y} & =\frac{\sum y}{n} \\
\bar{x} & =\frac{\sum x}{n} \\
b_{y x} & =\frac{\sum x y-\frac{\sum x \sum y}{n}}{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}
\end{aligned}
$$

x	y	$x y$	x^{2}
5	32	160	25
6	25	150	36
9	30	270	81
5	34	170	25
8	30	240	64
3	39	117	9
7	26	182	49
5	23	115	25
1	15	15	1
1	11	11	1
50	265	1430	316

Regresrion of y on x is

$$
\begin{aligned}
& y-\bar{y}=b_{y x}(x-\bar{x}) \\
& y-26.5=1.59(x-5) \\
& \\
& =1.59 x-7.95 \\
& y \\
& =1.59 x-7.95+26.5 \\
& y
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}=\frac{\sum x}{n}=\frac{50}{10}=5 \\
& \bar{y}=\frac{\sum y}{n}=\frac{265}{10}=26.5 \\
& b_{y x}=\frac{\sum x y-\frac{\sum x \sum y}{n}}{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}} \\
&=1430-\frac{(50)(265)}{10} \\
& 316-\frac{(50)^{2}}{10}
\end{aligned}
$$

$$
=\frac{1430-1325}{316-250}
$$

$$
=\frac{105}{66}=1.59
$$

Properties of Regression equations.

1) Regression equations represent two straight lines. These two lines coincide when there is a perfect correlation ($r= \pm 1$)
They are perpendicular to each other when there is no correlation. ($r=0$)
2) The intersection of both regression equations is (\bar{x}, \bar{y}).
(\vec{x}, \bar{y}) is the only point which satisfy both the equations simultaneously.
If both the regression equations are given, we can solve both equations and find the arithmetic mean of $x \& y$.
3) We have $b_{y x}=r \frac{\sigma_{y}}{\sigma_{x}}, b_{x y}=r \frac{\sigma_{x}}{\sigma_{y}}$

$$
\begin{aligned}
b_{y_{x}} \cdot b_{x y} & =r \frac{\sigma_{y}}{\sigma_{x}} \cdot r \frac{\sigma_{x}}{\sigma_{y}} \\
r & =r^{2} b_{y_{x}} \cdot b_{x y}
\end{aligned}
$$

Both regression coefficients have same sign.
r positive \Leftrightarrow both $b_{x y} \& b_{y_{x}}$ are positive
r negative \Leftrightarrow both $b_{x y} \& b_{y x}$ are negative

Pho. The regression of y on x for certain bivariate data was found to be $10 y=3 x+155$ and that of x on y was $10 x=7 y+10$. Find \bar{x} and \bar{y}
(\bar{x}, \bar{y}) is the point of intersection of both regression equations.

$$
\begin{array}{ll}
10 y=3 x+155 & \Rightarrow-3 x+10 y=155 \\
10 x=7 y+10 & \Rightarrow 10 x-7 y=10 \rightarrow(2)
\end{array}
$$

(1) $\times 10 \Rightarrow-30 x+100 y=1550$
(2)

$$
\begin{aligned}
x 3 \Rightarrow 30 x-21 y & =30 \\
79 y & =1580 \\
y & =\frac{1580}{79}=20
\end{aligned}
$$

$$
\begin{aligned}
&(2) \Rightarrow 10 x-7 y=10 \\
& 10 x-7(20)=10 \\
& 10 x-140=10 \\
& 10 x=10+140=150 \\
& \text { Soln: } \bar{x}=15, \bar{y}=20 \quad x=\frac{150}{10}=15
\end{aligned}
$$

1) Regression analysis is used to determine cause and effect relationship.
2) If the regression equation of y on x is $10 y=5-3 x$, the relationship of y on x is linear and direct.
3) If the slope of a regression line is positive then the value of r is the positive square root of r^{2}.
4) Suppose there is a direct relationship between price and demand, price tends to be high, when demand is high.
5) For a data, $r=0.3, b_{y x}=0.24$ and $b_{x y}=-0.375$. False.
6) If two variables x and y are highly correlated then y can be estimated for a given value of x using regression equation of y on x.
7) If the regression equation of x on y is $2 x+7 y=135$, the estimated value of x when $y=17$ is \qquad

$$
\begin{aligned}
2 x+7(17) & =135 \\
2 x+119 & =135 \\
2 x & =135-119=16 \\
x & =\frac{16}{2}=8
\end{aligned}
$$

Ans: $x=8$
3) If the two regression coefficients are $b_{y x}=3$ and $b_{x y}=1 / 3$, the correlation coefficent is \qquad

$$
r=\sqrt{b_{y x} \cdot b x_{y}}=\sqrt{3 \cdot \frac{1}{3}}=\sqrt{1}=1
$$

Ans

$$
r=1 .
$$

4) for 10 pairs x and y values, the regression coefficient can be \qquad
a) 1.2 and 0.8
b) 1.2 and 1.1
c) 1.2 and -0.2

Ans: a) 1.2 and 0.8
5) If the two regression coefficients are positive, then the value of correlation coefficient is positive and vice versa.
6) If the values of regression coefficients are 0.4 and 0.9 , then the value of correlation coefficient is

$$
r=\sqrt{b_{y x} \cdot b_{x y}}=\sqrt{0.4 \times 0.9}=\sqrt{0.36}=0.6
$$

T) If the values of regression coefficients are both 0.7 each, then the value of correlation coefficient is

$$
r=\sqrt{b_{y_{x}} \cdot b_{x y}}=\sqrt{0.7 \times 0.7}=\sqrt{(0.7)^{2}}=0.7
$$

8) The point (\bar{x}, \bar{y}) lies on both regression lines x on y and y on x.
9) If the values obtained from 10 pairs of x and y
are $b x=2, r=\frac{1}{3}$ SD of $x=3$ then SD of y is are $b_{x y}=2, r=\frac{1}{3}$, SD of $x=3$, then SD of y is

$$
\begin{aligned}
& b_{x y}=r \cdot \frac{\sigma_{x}}{\sigma_{y}} \\
& 2=\frac{1}{3} \cdot \frac{3}{\sigma_{y}} \\
& 2 \sigma_{y}=1 \\
& \therefore \sigma_{y}=\frac{1}{2}
\end{aligned}
$$

10) If the values obtained from 10 pairs of x and y are $b_{y x}=\frac{2}{3}, r=\frac{1}{2}, S D$ of $x=3$, then SD of y is

$$
\begin{aligned}
& b_{y_{x}}=r \cdot \frac{\sigma_{y}}{\sigma_{x}} \\
& \frac{2}{3}=\frac{1}{2} \cdot \frac{\sigma_{y}}{3} \Rightarrow \frac{2}{3} \times 2 \times 3=\sigma_{y} \\
& \Rightarrow \sigma_{y}=4
\end{aligned}
$$

11) The two regression lines intersect each other at the point (\bar{x}, \bar{y})
12) If the correlation coefficient is zero, the two regression lines are perpendicular.
13) If the correlation coefficient is +1 or -1 , the two regression lines coincide with each other.'
(4) The value of correlation coefficient is Geometric Mean of the two regression equations.
