Subject- Maths

Unit-I

1) The total co	ost function is giv	$en by C = x^2 + 5x + 5$	3, where x is
the number o	f units manufact	ured. Then Total Co	ost when $x = 2$
is			
a) 17	b) 14	c) 13	d) 2
2) The total co	ost function is giv	ven by $C = x^2 + 4x + 4$	2, where x is
the number o	f units manufact	ured. Then Total Co	ost when $x = 3$
is			
a) 23	b) 17	c) 14	d)3
3) The total co	ost function is giv	$en by C = x^2 + x + 4$	1, where x is
the number o	f units manufact	ured. Then Total Co	ost when $x = 4$
is			
a) 24	b) 12	c) 4	d) 16
4) The total co	ost function is giv	$en by C = x^2 + 2x + $	1, where x is
the number of	f units manufact	ured. Then Total Co	ost when $x = 3$
is			
a) 16	b) 15	c) 3	d)6
5) The deman	d function given	by $D = 10 + 2p$. The	n Total
revenue wher	n p = 5 is		
a) 20	b) 14	c) 5	d) 100
6) The deman	d function given	by $D = 5 + 2 p$. Then	n Total revenue
when $p = 5 is_$			

	_	by D = 3 + 4p. The	n Total revenue		
when $p = 2$ is a) 11	 b) 22	c) 10	d) 8		
•	•	ο, 10 1 by D = 4 + 4p . The	•		
revenue whe	_	10,0 4.46.1110	in rotar		
a) 12	b) 2	c) 24	d) 50		
•	$+ logx$ then $\frac{dy}{dx}$	•	,		
	$\frac{1}{dx}$				
a) $2x + \frac{1}{x}$		b) $x + \frac{1}{x}$			
c) $2 + \frac{1}{x}$		d) $2x + 1$	_		
10) If $y = e^{3x}$	$x + 3^x + 2$ then	$\frac{dy}{dx}$ is			
a) $3e^{3x} + 3$		an	$+ log 3.3^{x} + 2$		
c) $e^{3x} + log$	3.3^{x}	d) $3e^{3x}$	d) $3e^{3x} + log 3.3^x$		
11) The total	cost function is §	given by $C = x^2 + x + x$	- 2, where x is		
the number o	of units manufact	tured. Then Margin	al cost when		
x = 1 is					
a) 1	b) 3	c) 4	d) 2		
12) The total	cost function is g	given by $C = x^2 + 2x$	+ 2 , where x is		
the number o	of units manufact	tured . Then Margir	nal cost when		
x = 2 is	<u> </u>				
a) 2	b) 6	c) 10	d) 4		
13) The total	cost function is g	given by $C = x^2 + 4x$	+ 5, where x is		
the number o	of units manufact	tured. Then Margin	al cost when		
x = 10 is					
a) 145	b) 45	c) 24	d) 10		

14) The total cost fu	nction is given by	$C = x^2 + 4x + 2, w$	here x is
the number of units	manufactured. Th	ien Marginal cost	when x
= 2 is			
a) 10	b) 8	c) 12	d) 2
15) The demand fun	ction given by D =	1 +3p. Then Mar	ginal
revenue when p = 3	is		
a) 10	b) 30	c) 19 d) 18
16) The demand fun	ction given by D =	2 + p ⁻ Then Margi	nal
revenue when p = 4	is		
a) 10	b) 4	c) 24 d)	2
17) The demand fun	ction given by D =	2 + 4p ⁻ Then Mar	ginal
revenue when p = 3	is		
a) 14	b) 42	c) 26	d) 3
18) The demand fun	ction given by D =	5 + 3p . Then Ma	rginal
revenue when p = 4	is		
•	o) 17	c) 68	d) 4
19) If $y = 2x^2 + log x + 1$ then $\frac{dy}{dx}$ is			
a) $2 + \frac{1}{x}$		b) $x + \frac{1}{x} + 1$	
c) $4x + \frac{1}{x}$		d) $2x + 1$	
20) If $y = e^{2x} + 2^x$	then $\frac{dy}{dx}$ is		
a) $2e^{2x} + log 2.2^x$		b) $2e^{2x} + 2.2$	x
c) $e^{2x} + log 2.2^x$		d) $2e^{2x} + 2$	2 ^x

21) The total	cost function is gi	iven by $C = x^2 + 4x$	+ 50, where x
is the numbe	r of units manufa	ctured. Then Avera	ge Cost when
x = 10 is			
a) 10	b) 190	c) 19	d) 50
22) The total	cost function is gi	iven by $C = x^2 + 5x +$	- 100, where x
is the numbe	r of units manufa	ctured. Then Avera	ge Cost when
x = 5 is			
a) 5	b) 150	c) 30	d) 100
23) The total	cost function is gi	iven by $C = x^2 + 3x$	+ 5, where x is
the number of	of units manufacti	ured. Then Average	Cost when
x = 5 is			
a) 45	b) 9	c) 20	d) 5
24) The total	cost function is gi	iven by $C = x^2 + 5x^2$	+ 50, where x
is the numbe	r of units manufa	ctured. Then Avera	ge Cost when
x = 10 is			
a) 10	b) 200	c) 20	d) 50
25) The dema	and function giver	n by p = $2 + 2D + D^2$. Then
average reve	nue when $D = 4$ is	·	
a) 26	b) 10	c) 104	d) 4
26) The dema	and function giver	n by $p = 1 + 3D + 2D$	o² . Then
average reve	nue when $D = 3$ is	·	
a) 28	b) 10	c) 81	d) 3

27) The demand	function given	by $p = 2 + D$	+ D ² . Then average	
revenue when D	= 2 is	_		
a) 16	b) 4	c) 2	d) 8	
28) The demand	function given	by $p = 2 + D$	+ D ² . Then average	
revenue when D	= 5 is	-		
a) 32	b) 12	c) 160	d) 5	
29) If $y = x^3 +$	$2e^{-x} + 1$ then	$\frac{dy}{dx}$ is		
a) $3x^2 - 2e^{-x}$			b) $x^2 - 2e^{-x}$	
c) $3x^2 - e^{-x}$			d) $3x^2 + 2e^{-x}$	
30) If $y = x + 3$	log x + 3 then	$\frac{dy}{dx}$ is		
a) $1 + \frac{3}{x}$		b) $x + \frac{3}{x}$		
c) $1 + \frac{1}{x}$		d) 1		
31)) If demand t	function is D = :	1 - p. Then Pr	ice elasticity of	
demand when p	= 3 is			
a) 1.5	b) -1.5	c) 2	d) -2	
32) If demand function is $D = 3 - p$. Then Price elasticity of				
demand when p	= 2 is			
a) 1	b) -1	c) 2	d) -2	
33)) If demand function is $D = 3 - 2p$. Then Price elasticity of				
demand when p	= 2 is			
a) -2	b) 2	c) 4	d) -4	
34) If demand function is $D = -4 - p$. Then Price elasticity of				
demand when p = 1 is				
a) -0.2	b) 0.2	c) 5	d) -5	

35) The Extreme value of function
$$f(x) = 1 - 2x + x^2$$
 is

a)
$$x = 1$$
 is minimum

b)
$$x = 1$$
 is maximum

c)
$$x = -1$$
 is minimum

b)
$$x = -1$$
 is maximum

36) The Extreme value of function
$$f(x) = 2 - 4x + x^2$$
 is

a)
$$x = 2$$
 is maximum

b)
$$x = 2$$
 is minimum

c)
$$x = -2$$
 is minimum

d)
$$x = -2$$
 is maximum

37) The Extreme value of function
$$f(x) = -2 - 8x - 2x^2$$
 is

a)
$$x = -2$$
 is minimum

b)
$$x = -2$$
 is maximum

c)
$$x = 2$$
 is minimum

d)
$$x = 2$$
 is maximum

38) The Extreme value of function
$$f(x) = 1 + 12x - 3x^2$$
 is

a)
$$x = 2$$
 is minimum

b)
$$x = 2$$
 is maximum

c)
$$x = -2$$
 is minimum

d)
$$x = -2$$
 is maximum

39) If
$$y = x^2 + 2e^{2x} + 1$$
 then $\frac{dy}{dx}$ is

a)
$$2x + 4e^{2x}$$

b)
$$2x + e^{2x}$$

c)
$$2x$$

d)
$$x + 4e^{2x}$$

40) If
$$y = 4^x + 2 \log x + x$$
 then $\frac{dy}{dx}$ is

a)
$$log 4.4^x + \frac{2}{x} + 1$$

b)
$$4.4^x + \frac{2}{x}$$

c)
$$4^x + \frac{2}{x} + 1$$

d)
$$log 4.4^x + 1$$

Choose correct alternative in each of the following

(20)

If P is the principal, N is the number of years at the rate of interest R% per annum then the simple interest is given by :

(a)
$$I = PNR/100$$

(b)
$$I = PNR/1000$$

(c)
$$I = PNR/200$$

(d)
$$I = PNR/10$$

2	The simple interest on principal 1500/- at 5% per annum for 3 years is:		
	(a) Rs. 225	(b)	Rs. 250
	(c) Rs. 450	(d)	Rs. 25
3	The principal that will earn Rs. 4000 as simple interest in 8 years at 5% per annum is:		
	(a) Rs. 10000	(b)	Rs. 1000
	(c) Rs. 20000	(d)	Rs. 30000
4	A sum of Rs. 3800 amounts to Rs. 4370 a	t the s	imple interest of 5% per annum in:
	(a) 2 years	(b)	3 years
	(c) 4 years	(d)	1 year
5	What should be the rate of interest so that	a sum	•
	years with respect to the simple interest?		•
	(a) $R=6\%$ per annum.	(b)	R= 6.67% per annum.
	. ,	(0)	-
	(c) R= 7 % per annum.	(d)	R= 7.67% per annum.
6	The compound interest of Rs. 10,000 at int	terest 1	rate 5% per annum for 3 years will be:
	(a) Rs. 2576.30	(b)	Rs. 1576.30
	(c) Rs. 1676.30	(d)	Rs. 1776.30
7	The difference of compound interest and s	imple	interest for 3 years at 9% per annum on
	certain sums is Rs.60. Then the present val	lue of	a sum is :
	(a) Rs. 3397.12	(b)	Rs. 4397.12
	(c) Rs. 2397.12	(d)	Rs. 5397.12
8	If P is the principal amount, n denotes nu		of years, $R = \text{rate of interest per annum}$,
	I = R/100, then compound interest will be		
	(a) C.I. = $P[(1 + I)^n - 2]$	` /	$C.I. = P[(1+I)^n -3]$
	(c) C.I. = $P[(1 + I)^n - 1]$	` /	$C.I. = P[(1 + I)^n - 4]$
9	If P is the principal amount, n denotes number of years, $R = \text{rate of interest per annum}$,		
	I = R/100, then the formula of total amount, calculated quarterly		
	(based on compound interest) will be:		2
	(a) $A = P(1 + I/4)^{2n}$		$A = P(1 + I/4)^{3n}$
	(c) $A = P(1 + I/4)^n$	()	$A = P(1 + I/4)^{4n}$
10	A sum of Rs. 9000 is invested today. The o		
	of 12% per annum is compounded quarterly	-	
	(a) Rs. 2500.93	` '	Rs. 2600.93
	(c) Rs. 2400.93	(d)	Rs. 3 400.93
11	The effective rate of interest corresponding	g to a 1	nominal rate of 10% per annum
	compounded semi- annually is		-
	(a) 10.25	(b)	12.5
	(c) 15.20	(d)	10.52

12	The effective rate of interest equivalent to	o a nom	ainal rate of 8% per annum compounded
	quarterly is approximately	(1.)	0.240/
	(a) 5%	(b)	
10	(c) 8.16 %	\ /	9.28 %
13	The amount at the end of 1 year of an ann	iuity of	Rs. 4000/- payable quarterly, @ rate of
	12%per annum is		
	(a) Rs. 16,374.84	` '	Rs. 17,374.84
	(c) Rs. 16,734.68		Rs. 18,374.84
14	The formula to find present value of annu		
			A $[(1+i)^n - 1/(1+i)^n]$
	(c) A $[(1+i)^n - 1/i(1+i)^{2n}]$	(d)	A $[(1+i)^n - 1/i(1+i)^{3n}]$
15	The Equated Monthly Installment (EMI)	on a lo	oan of Rs. 1,20,000 for a period of 8 months
	at a rate of 12% per annum by the flat rate	e of int	erest method is
	(a) Rs. 16,400	(b)	Rs. 16,800
	(c) Rs. 16,200	(d)	Rs. 17,200
16	A person has taken a loan of Rs. 40,000 a	it the ra	te of 10% per month. The person repays
	loan using the flat interest rate method in	n 4 moi	nths, then the EMI is
	(a) Rs. 20,000	(b)	Rs. 10,000
	(c) Rs. 14,000	(d)	Rs. 20,00
17	A person has taken a loan of Rs. 4,00,000) from a	a bank at 10% rate of interest per annum
	for a term of 4 years. Then the nearest EM	//I is	
	(a) Rs. 1,26,188	(b)	Rs. 1,28,188
	(c) Rs. 1,26,100	(d)	Rs. 2,26,188
18	EMI stands for :		
	(a) equal monthly instalments	(b)	equated monitor instalments
	(c) equated money instalments	(d)	equated monthly instalments
19	If the principal is Rs. P and $i = R/100$, the	nen the	Accumulated value (A) or future value at
	the end of n years will be:		
	$(a) A = P(1+i)^n$	(b)	$A = P(1+i)^{2n}$
	(c) $A = nP(1+i)^n$	(d)	$A = 2P(1+i)^n$
		. ,	`
	Rahul deposited Rs 5000 in a bank for 2	vears	at 7% per annum compound interest. Then
20	the future value at the end of 2 years will	•	Then
_~	(a) Rs.4742.5	(b)	Rs.5742.5
	(c) Rs.6742.5	(d)	Rs.7742.5
21		()	at 8% per annum compound interest. Then
∠ 1	the future value at the end of 2 years will		at 670 per annum compound interest. Then
	and ruture varue at the child of 2 years will	UC.	

(b) Rs.5742.5

(a) Rs.2742.80

22	Rahul deposited Rs. 7500 in a bank for 4 years at 7% per annum compound interest. The				
	the	the future value at the end of 3 years will be:			
	(a)	Rs. 6187.80	(b)	Rs. 7187.80	
	(c)	Rs. 9187.80	(d)	Rs. 8187.80	
23	PV	AR stands for:			
	(a)	present value of annuity regular	(b)	past value of annuity regular	
	(c)	future value of annuity regular	(d)	present value of monthly regular	
24	If A	is annual instalment, $i = R/100$, $n = nu$	mber	of years, R = rate of interest compounded,	
	ther	n present value of annuity regular (PVA	R) is	:	
		$PVAR = A[(1+i)^n - 1 / i(1+i)^n]$			
	(c)	$PVAR = A[(1+i)^n / i(1+i)^n]$	(d)	$PVAR = A[(1+i)^n - 1 / (1+i)^n]$	
25				talment. He pays Rs. 8,000 at the time of	
	puro	chase and balance in 4 years with 8% pe	er ann	num compound interest. Then the annual	
	inst	alment will be :			
	(a)	Rs. 5096 approximately	(b)	Rs. 18096 approximately	
	(c)	Rs. 25096 approximately	(d)	Rs. 15096 approximately	
26	The	accumulated value at the end of 4 year	s of a	n ordinary annuity of Rs. 1500 per annum,	
	if th	ne interest rate is 9% per annum compou	ınded	annually will be:	
	(a)	PVAR(4, 0.09) = Rs.6,859.67	(b)	PVAR(4, 0.09) = Rs.859.67	
	(c)	PVAR(4, 0.09) = Rs.5,859.67	(d)	PVAR(4, 0.09) = Rs.2,859.67	
27	An	annuity is a series of payments made at			
		equal intervals	(b)	unequal intervals	
	(a)		(0)		
	(c)	one year only	(d)	five years only	
If $P = \text{value of each payment}$, $r = \text{interest rate per period}$, $n = \text{number of p}$			er period, n = number of periods and		
	PV	= present value of an ordinary annuity,	then		
	(a)	$PV = Px \ 1 + (1 + r)^{-n} / r$	(b)	$PV = Px \ 1 - (1 + r)^{-n} / r$	
	(c)	$PV = Px (1 + r)^{-n} / r$	(d)	$PV = Px \ 1 - (1 + r)^{-n}$	
29	Ran	nesh takes a loan of Rs. 2,50,000 from a	a frier	nd at 10% per annum flat rate of interest for	
	a period of 4 years. Then the EMI will be:				
	(a)	Rs. 8,292	(b)	Rs. 4,292	
	(c)	Rs. 5,292	(d)	Rs. 7,292	
30	Rs.	2,560 is invested in a term deposit scho	eme f	or 3 years at 6% per annum at compounded	
	inte	rest. Then the compound interest will be	e :		
	(a)	Rs. 389.01	(b)	Rs. 489.01	
	(c)	Rs. 589.01	(d)	Rs. 689.01	

(d) Rs.4761.72

(c) Rs.3742.5

31	A person borrowed Rs. 10,000 at 12% per	annum. If he is supposed to return the money	
	within 2 years, then his EMI, using interest	st on reducing balance method is	
	(a) Rs. 370.7352	(b) Rs. 470.7352	
	(c) Rs. 570.7352	(d) Rs. 670.7352	
32	A person borrowed Rs. 10,000 at 12% per	annum. If he is supposed to return the money	
	within 2 years, then his EMI, using flat in	nterest rate method is	
	(a) Rs. 516.666	(b) Rs. 470.7352	
	(c) Rs. 670.7352	(d) Rs. 870.7352	
33	A person borrowed Rs. 100 at 6% per ann	num. If he is supposed to return the money within	
	1 year, then his EMI, using flat interest r	rate method is	
	(a) Rs. 5.6066	(b) Rs. 9.6066	
	(c) Rs. 8.8333	(d) Rs. 10.6066	
34	A person borrowed Rs. 100 at 6% per ann	num. If he is supposed to return the money within	
	1 year, then his EMI, using interest on red	ducing balance method is	
	(a) Rs. 10.8333	(b) Rs. 18.20	
	(c) Rs. 8.6066	(d) Rs. 28.8333	
35	A person borrowed Rs. 5000 at 10% per a	annum. If he is supposed to return the money	
	within 2 years, then his EMI, using interes	st on reducing balance method is	
	(a) Rs. 330.7246	(b) Rs. 430.7246	
	(c) Rs. 530.7246	(d) Rs. 230.7246	
36		annum. If he is supposed to return the money	
	within 2 years, then his EMI, using flat in	nterest rate method is	
	(a) Rs. 250	(b) Rs. 150	
	(c) Rs. 350	(d) Rs. 450	
37			
	within 1 year, then his EMI, using flat in		
	(a) Rs. 6660	(b) Rs. 6650	
	(c) Rs. 5550	(d) Rs. 7000	
38		r annum. If he is supposed to return the money	
	within 1 year, then his EMI, using reduci	_	
	(a) Rs. 6663.659	(b) Rs. 660	
• •	(c) Rs. 7660	(d) Rs. 5660.50	
39	-	f Rs. 1,500 per half year for 4 years at 8% to be	
	calculated half yearly is	4) 7 7600	
	(a) Rs. 10099.12	(b) Rs. 7660.60	
	(c) Rs. 2660.567	(d) Rs. 36605.90	
40		f Rs. 3,500 per year for 3 years at 12% per annum	
	is	(1) P 0550.53	
	(a) Rs. 8859.53	(b) Rs. 8559.53	
	(c) Rs. 9559.53	(d) Rs. 10559.53	

- A person has taken a loan of Rs. 4,00,000 from a bank at 10% rate of interest per annum for a term of 4 years. Then the nearest EMI is ----
 - (a) Rs. 1,26,188

(b) Rs. 1,28,188

(c) Rs. 1,26,100

(d) Rs. 2,26,188