## TYBSC (MATHS), PAPER-III, METRIC SPACES(CONTINUOUS FUNCTIONS) QUESTION BANKS

|  | Choose correct alternative in each of the following |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be two metric spaces, then $f: X \rightarrow Y$ is continuous at $a \in X$, if for given $\epsilon>0, \exists \delta>0$ such that |  |  |  |
|  | (a) | $d_{1}(x, a)>\delta \Rightarrow d_{2}(f(x), f(a))<\epsilon$ | (b) | $d_{1}(x, a)<\delta \Rightarrow d_{2}(f(x), f(a))<\epsilon$ |
|  | (c) | $d_{1}(x, a)<\delta \Rightarrow d_{2}(f(x), f(a))>\epsilon$ | (d) | $d_{1}(x, a)>\delta \Rightarrow d_{2}(f(x), f(a))>\epsilon$ |
| 2 | If ( $X, d$ ) is a metric space, then identity function function $f: X \rightarrow X$ is |  |  |  |
|  | (a) | Continuous function. | (b) | Continuous only if $X$ is finite. |
|  | (c) | Continuous only if $X$ is countable | (d) | Discontinues on X |
| 3 | Let $f, g: X \rightarrow Y$ be two continuous functions, $\alpha$ be any scalar then |  |  |  |
|  | (a) | $\frac{f}{g}$ is continuous | (b) | $\frac{g}{f}$ is continuous |
|  | (c) | $\alpha f$ is continuous for $\alpha>0$ | (d) | $\alpha f$ is continuous. |
| 4 | Let $f, g: R^{n} \rightarrow R$ be continuous functions, such that $h(x)=\{f(x), g(x)\}$ and $g(x)=\{f(x), g(x)\}$ then |  |  |  |
|  | (a) | $h(x)$ is continuous but $g(x)$ is not continuous. | (b) | $h(x)$ is not continuous but $g(x)$ is continuous. |
|  | (c) | $h(x)$ and $g(x)$ are continuous. | (d) | $h(x)$ and $g(x)$ not continuous. |
| 5 | Let $(X, d)$ and $(Y, \rho)$ be metric space, $f: X \rightarrow Y$, then which of the following statement True? |  |  |  |
|  | (a) | $f$ is continuous iff $f$ is sequentially continuous | (b) | $f$ may be continuous but not sequentially continuous. |
|  | (c) | $f$ may not be continuous but sequentially continuous. | (d) | $f$ is continuous iff both $X$ and $Y$ are closed. |
| 6 | Let $(X, d)$ be a metric space and $A \subset X$. Let $f(x)=d(x, A)$ for $x \in X$, then $f: X \rightarrow R$ is |  |  |  |
|  | (a) | Uniformly continuous | (b) | Continuous but not uniformly continuous |
|  | (c) | Not continuous | (d) | Neither continuous not uniformly continuous, |
| 7 | Let $A=\left\{x \in R: \cos \cos x=\frac{\sqrt{3}}{2}\right\}$, the distance $R$ is usual then. |  |  |  |


|  | (a) | $A$ is finite closed set | (b) | $A$ is infinite closed set |
| :---: | :---: | :---: | :---: | :---: |
|  | (c) | A is open set | (d) | A is bounded |
| 8 | $f, g: R \rightarrow R$ are any maps, such that $f o g$ and $g o f$ are continuous (distance is usual) then, |  |  |  |
|  | (a) | $f o g=g o f$ | (b) | At least one of $f$ and $\mathbf{g}$ is continuous |
|  | (c) | Both $f$ and $g$ are continuous | (d) | Neither $f$ nor $g$ may be continuous. |
| 9 | Let $X=M_{2}(R)$ and $\\|A\\|=\sqrt{\Sigma_{1 \leq i \leq j \leq 2} a_{i j}^{2}}, f: X \rightarrow R$ (usual distance) defined by $f(A)=\operatorname{det} \operatorname{det} A$ then |  |  |  |
|  | (a) | $(G L)_{2}(R)$ is closed subset of $X$ | (b) | $(S L)_{2}(R)$ is open subset of $X$ |
|  | (c) | $f$ is continuous | (d) | $f$ is not continuous. |
| 10 | Let ( $X, d$ ) be compact metric space, $f: X \rightarrow(0, \infty)$ be continuous then $\exists \epsilon>0$ such that |  |  |  |
|  | (a) | $f(x)>\epsilon, \forall x \in X$ | (b) | $f(x)<\epsilon, \forall x \in X$ |
|  | (c) | $f(x) \geq \epsilon, \forall x \in X$ | (d) | $f(x) \leq \epsilon, \forall x \in X$ |
| 11 | Let $(X, d)$ and $\left(Y, d_{1}\right)$ be metric space, then any Lipschitz function $f:(X, d) \rightarrow\left(Y, d_{1}\right)$ is |  |  |  |
|  | (a) | Continuous but not uniformly continuous | (b) | Uniformly continuous |
|  | (c) | Not uniformly continuous | (d) | discontinuous |
| 12 | A point $x \in X$ is called fixed point of the mapping $T: X \rightarrow X$ if |  |  |  |
|  | (a) | $T(x)=x$ | (b) | $T(x)>x$ |
|  | (c) | $T(x)<x$ | (d) | $T(x)=0$ |
| 13 | Let $f: X \rightarrow Y$ is such that $f$ is continuous and $f\left(x_{n}\right) \rightarrow f(x)$ then |  |  |  |
|  | (a) | $x_{n}$ does not converges to $x$ | (b) | $x_{n} \rightarrow x$ |
|  | (c) | $\left(x_{n}\right)$ may not be convergent | (d) | $x_{n} \rightarrow x$ for finite set $X$ only |
| 14 | Let ( $X, d$ ) and (Y,d) be two metric spaces $f: X \rightarrow Y$ is continuous then for each |  |  |  |
|  | (a) | Open subset of $G$ of $X, f(G)$ is open in $Y$. | (b) | Closed subset of $H$ of $X, f(H)$ is open in $Y$ |
|  | (c) | Open subset of $G$ of $Y, f^{-1}(G)$ is open in $Y$. | (d) | Open subset of $G$ of $Y, f^{-1}(G)$ is closed in $Y$. |
| 15 | Let $(X, d)$ and $\left(Y, d_{1}\right)$ be two metric spaces. and $f: X \rightarrow Y$ is continuous for each $B \subseteq X$ then |  |  |  |
|  | (a) | $f^{-1}(\underline{B}) \subseteq \underline{f^{-1}(B)}$ | (b) | $f(\underline{B}) \subseteq \underline{f(B)}$ |
|  | (c) | $\underline{f(B) \subseteq f(\underline{B})}$ | (d) | $f(\underline{B})=\underline{f(B)}$ |


| 16 | Let $(X, d)$ be a complete metric space and $T: X \rightarrow X$ be such that $d(T(x), t(y))<$ $d(x, y)$ then |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (a) | $T$ does not have a unique point | (b) | $T$ has two fixed points |
|  | (c) | $T$ has multiple fixed point | (d) | $T$ has unique fixed points. |
| 17 | Let $(X, d)$ and $\left(Y, d_{1}\right)$ be two metric spaces. and $f: X \rightarrow Y$ is continuous, if $(X, d)$ is compact metric space then $f: X \rightarrow Y$ is |  |  |  |
|  | (a) | Uniformly continuous | (b) | discontinuous |
|  | (c) | Continuous but not uniformly | (d) | May or may not be uniformly continuous. |
| 18 | Let $(X, d)$ and $(Y, \rho)$ be metric spaces, $Y$ is discrete metric space and $f: X \rightarrow Y$ is such that $\rho(f(x), f(y)) \leq c d(x, y), c \in[0,1]$ Then for $x \in B\left(x_{0}, \frac{1}{c}\right), x_{0} \in X$ |  |  |  |
|  | (a) | $f$ is identify function | (b) | $f(x)=0$ |
|  | (c) | $f(x)=1$ | (d) | $f$ is constant function |
| 19 | Let $f:[2,3] \rightarrow[2,3]$ be differential function and $\left\|f^{\prime}(x)\right\|<0.5$, then $f$ is contraction on |  |  |  |
|  | (a) | $[2,3]$ | (b) | [2.5,3] only |
|  | (c) | [2,2.5] only | (d) | $f$ is not contraction. |
| 20 | Let $(X, d)$ and $(Y, \rho)$ be metric spaces, $f, g: X \rightarrow Y$ be continuous functions then the set $U=\{x \in X: f(x) \neq g(x)\}$ then |  |  |  |
|  | (a) | $U$ is closed subset of $X$ | (b) | $U$ is open subset of $X$ |
|  | (c) | $U$ is both open and closed subset of $X$ | (d) | $U$ is neither open nor closed subset of $X$ |
| 21 | Let $(X, d)$ and $(Y, \rho)$ be metric spaces, $f, g: X \rightarrow Y$ be continuous functions. Let $U$ be any open subset of $X$ and $V$ be any open subset of $Y$ then |  |  |  |
|  | (a) | $\left(f^{-1}(V)\right)^{\circ} \subseteq f^{-1}\left(V^{\circ}\right)$ | (b) | $\left(f^{-1}(U)\right)^{\circ} \subseteq f^{-1}\left(U^{\circ}\right)$ |
|  | (c) | $f^{-1}\left(V^{\circ}\right) \subseteq\left(f^{-1}(V)\right)^{\circ}$ | (d) | $f^{-1}\left(U^{\circ}\right) \subseteq\left(f^{-1}(U)\right)^{\circ}$ |
| 22 | Let $(Z, d)$ and $\left(Y, d_{1}\right)$ be metric spaces such that $f:(Z, d) \rightarrow\left(X, d_{1}\right)$ be continuous where $d$ is usual distance on $N$ then metric $d_{1}$ is |  |  |  |
|  | (a) | Usual only | (b) | Euclidian only |
|  | (c) | Discrete only | (d) | Any metric |
| 23 | Let metrics $d_{1}$ and $d_{2}$ are equivalent metrics then identity map $i$ on $X$ defined as $i:\left(X, d_{1}\right) \rightarrow\left(X, d_{2}\right)$ and $i:\left(X, d_{2}\right) \rightarrow\left(X, d_{1}\right)$ such that |  |  |  |


|  | (a) | Both identity maps are discontinuous | (b) | Both identity maps are continuous |
| :---: | :---: | :---: | :---: | :---: |
|  | (c) | Both identity maps are continuous for usual distance only | (d) | One metric is usual and other discrete only |
| 24 | Let $(X, d)$ be a metric space and $A \subseteq X, f: X \rightarrow R$ is continuous for $f_{A}(x)=d(x, A)$ where $d$ is usual in $R$ and $f_{A}(x)=0$ then |  |  |  |
|  | (a) | $x \in A$ | (b) | $x \in A^{\circ}$ |
|  | (c) | $x \in \operatorname{closure}(A)$ | (d) | $A$ is singleton set |
| 25 | Let denotes usual distance in $R$ and $d_{1}$ denotes the discrete metric on $R$ and $d_{1}$ denotes the discrete metric on $R$. let $i:\left(R, d_{1}\right) \rightarrow(R, d)$ be the identity map. Then |  |  |  |
|  | (a) | $\underline{i Q} \subseteq i(\underline{Q})$ | (b) | $\underline{i^{-1}(Q) \subseteq i^{-1}(\underline{Q})}$ |
|  | (c) | $i^{-1}(\underline{Q}) \subseteq \underline{i^{-1}(Q)}$ | (d) | $\underline{i Q}=i(\underline{Q})$ |
| 26 | Let $(X, d)$ be a finite metric space, if $f, g \in C(X, R)$, then |  |  |  |
|  | (a) | $f+g \in C(X, R)$, but $f g$ may not be in $C(X, R)$. | (b) | $f+g, f-g \in C(X, R)$, but $2 f$ may not be in $C(X, R)$. |
|  | (c) | $f+g, f-g$ and $2 f \in C(X, R)$ | (d) | $f+g, f-g \in C(X, R)$, but $f g$ may not be in $C(X, R)$. |
| 27 | Let $f:[0,2 \pi] \rightarrow R$, such that $f(t)=(\cos \cos t, \sin \sin t)$ |  |  |  |
|  | (a) | $f$ is continuous | (b) | $f$ is discontinuous |
|  | (c) | $f$ is discontinuous at 0 . | (d) | $f$ is discontinuous at 1. |
| 28 | $f:[a, b] \rightarrow R$, defined as $f(x)=x^{2}$ is uniformly continuous, where |  |  |  |
|  | (a) | $b>0$ | (b) | $b<0$ |
|  | (c) | $b=0$ | (d) | $b \in Z$ |
| 29 | Let $(X, d)$ and $\left(Y, d_{1}\right)$ be metric spaces and such that $d$ is discrete and $f: X \rightarrow Y$ is continuous, metric $d_{1}$ is |  |  |  |
|  | (a) | Any metric | (b) | also discrete |
|  | (c) | not discrete | (d) | usual only. |
| 30 | Let $f: R \rightarrow R$ defined as $f(x)=3 x-2$ then fixed point of $f$ is |  |  |  |
|  | (a) | 0 | (b) | 1 |
|  | (c) | 2 | (d) | 3 |
| 31 | Let $X_{1}=[0,1] ; Y=[0, \infty) ; X_{2}=(0,1) \cup(2,3), Y_{2}=(0,1), X_{3}=(0,1), Y_{3}=\{0,1\}$. Then there exists a continuous onto function from $X_{i} \rightarrow Y_{i}$ when |  |  |  |
|  | (a) | $i=2$ | (b) | $i=3$ |


|  | (c) | $i=1,2$ |  | $i=1,2,3$ |
| :---: | :---: | :---: | :---: | :---: |
| 32 | Let $(X, d)$ be a metric space where $X$ is finite set and $\left(Y, d^{\prime}\right)$ be any metric space. Let $f: X \rightarrow Y$. Then false statement is |  |  |  |
|  | (a) | $f$ is continuous on $X$ | (b) | $f(X)$ is bounded |
|  | (c) | If $\mathbf{A}$ is open in $X, f(A)$ is open in Y | (d) | If $\mathbf{B}$ is closed in $Y, f^{-1}(B)$ is closed in X |
| 33 | Let $(X, d)$ and $\left(Y, d_{1}\right)$ be metric spaces, such that $X$ is finite and $f: X \rightarrow Y$ is continuous, then |  |  |  |
|  | (a) | $Y$ is also finite | (a) | $Y$ is infinite |
|  | (c) | $Y$ is any metric space | (c) | $d=d_{1}$ |
| 34 | Let $(X, d)$ and $(Y, \rho)$ be metric spaces, $f: X \rightarrow Y$ is continuous at $x \in X$. Let $U$ is any open subset of $Y$ containing $f(x)$, then there is an open set $V \subset X$, such that |  |  |  |
|  | (a) | $f(V) \subseteq U, x \notin X$ | (b) | $f(V) \subseteq U, x \in X$ |
|  | (c) | $f(V) \supseteq U, x \notin X$ | (d) | $f(V) \supseteq U, x \in X$ |
| 35 | Let $f, g:(0,1) \rightarrow R$ such that $f(x)=\frac{1}{x}, g(x)=\sin \sin \left(\frac{1}{x}\right)$ then |  |  |  |
|  | (a) | $f$ and $g$ are uniformly continuous | (b) | Only one of them is uniformly continuous |
|  | (c) | $f . g$ is uniformly continuous. | (d) | $f$ and $g$ are not uniformly continuous. |
| 36 | Let $f, g: R \rightarrow R$ such that $f(x)=x$ and $g(x)=x^{2}$ then |  |  |  |
|  | (a) | $f$ and $g$ are uniformly continuous | (b) | $f$ and $g$ are not uniformly continuous |
|  | (c) | only $f$ is uniformly continuous | (d) | only $g$ is uniformly continuous |
| 37 | $f(x)=\frac{1}{1+x^{2}}$ is uniformly continuous on $R$ then |  |  |  |
|  | (a) | $x>0$ | (b) | $x<0$ |
|  | (c) | $x \in Q$ |  | $x \in R$ |
| 38 | Let $(X, d)$ be a compact metric space and $f: X \rightarrow(0, \infty)$. (usual distance) be a continuous function. If inf inf $\{f(x): x \in X\}=m$ then |  |  |  |
|  | (a) | $m$ may be zero | (b) | $m>0$ |
|  | (c) | $m=0$ | (d) | $m$ may be negative |
| 39 | Let $(N, d)$ and $(Y, \rho)$ be metric spaces such that $f:(N, d) \rightarrow(X, \rho)$ be continuous where $d$ is usual distance on $N$ then metric $\rho$ is |  |  |  |
|  | (a) | Usual only | (b) | Euclidian only |
|  | (c) | Discrete only | (d) | Any metric |
| 40 | Let $(X, d)$ and $(Y, \rho)$ be metric spaces, $f, g: X \rightarrow Y$ be continuous functions such that, |  |  |  |


| $H=\{x \in X: f(x)=g(x)\}$, let $D$ be dense subset of $x$ then |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | (a) | $f(x)=0=g(x), \forall x \in D$ | (b) | $f(x)<g(x), \forall x \in D$ |
|  | (c) | $f(x)>g(x), \forall x \in D$ | (d) | $f(x)=g(x), \forall x \in D$ |
|  |  |  |  |  |

