TYBSC (MATHS), PAPER-III, METRIC SPACES(CONTINUOUS FUNCTIONS) QUESTION BANKS

	Choose correct alternative in each of the following				
1	Let (X, d_1) and (Y, d_2) be two metric spaces, then $f: X \to Y$ is continuous at $a \in X$, if for given $\epsilon > 0$, $\exists \ \delta > 0$ such that				
	(a)	$d_1(x,a) > \delta \Rightarrow d_2(f(x),f(a)) < \epsilon$	(b)	$d_1(x,a) < \delta \Rightarrow d_2(f(x),f(a)) < \epsilon$	
	(c)	$d_1(x,a) < \delta \Rightarrow d_2(f(x),f(a)) > \epsilon$	(d)	$d_1(x,a) > \delta \Rightarrow d_2(f(x),f(a)) > \epsilon$	
			ı	2000	
2	If (X, d) is a metric space, then identity function function $f: X \to X$ is				
	(a)	Continuous function.	(b)	Continuous only if X is finite.	
	(c)	Continuous only if X is countable	(d)	Discontinues on X	
3	Let $f, g: X \to Y$ be two continuous functions, α be any scalar then				
	(a)	$\frac{f}{a}$ is continuous	(b)	а	
	(c)	αf is continuous for $\alpha > 0$	(d)	αf is continuous.	
4		$f, g: R^n \to R$ be continuous functions			
		$f(x) = \{f(x), g(x)\} \text{ and } g(x) = \{f(x), g(x)\}$			
	(a)	h(x) is continuous but $g(x)$ is not	(b)	h(x) is not continuous but $g(x)$ is	
		continuous.	(T)	continuous.	
	(c)	h(x) and $g(x)$ are continuous.	(d)	h(x) and $g(x)$ not continuous.	
5	Let (X, d) and (Y, ρ) be metric space, $f: X \to Y$, then which of the following statement				
	True?				
	(a)	f is continuous iff f is		f may be continuous but not	
		sequentially continuous	(b)	sequentially continuous.	
		- '			
	(c)	f may not be continuous but	(4)	f is continuous iff both X and Y are	
		sequentially continuous.	(d)	closed.	
6	Let (V, d) be a matrix group and $A \subseteq V$ Let $f(v) = d(v, A)$ for $v \in V$ then $f(V) \in \mathbb{R}^d$.				
	Let (X, d) be a metric space and $A \subset X$. Let $f(x) = d(x, A)$ for $x \in X$, then $f: X \to R$ (a) Uniformly continuous Continuous but not uniformly			Continuous but not uniformly	
	(a)	Cimorniny continuous	(b)	continuous	
	(c)	Not continuous	(4)	Neither continuous not uniformly	
			(d)	continuous,	
7	Let $A = \left\{ x \in R : \cos \cos x = \frac{\sqrt{3}}{2} \right\}$, the distance R is usual then.				
L					

	(a)	A is finite closed set	(b)	A is infinite closed set
	(c)	A is open set	(d)	A is bounded
8	$f, g: R \to R$ are any maps, such that $f \circ g$ and $g \circ f$ are continuous (distance is usual)			
	then,			
	(a)	fog = gof	(b)	At least one of f and g is continuous
	(c)	Both f and g are continuous	(d)	Neither f nor g may be continuous.
9				
	Let	$X = M_2(R) \text{ and } A = \sqrt{\sum_{1 \le i \le j \le 2} a_{ij}^2}$	$, f: \lambda$	$X \to R$ (usual distance) defined by
	f(A)	$= det \ det \ A$ then		
	(a)	$(GL)_2(R)$ is closed subset of X	(b)	$(SL)_2(R)$ is open subset of X
	+	f is continuous		f is not continuous.
	(c)	j is continuous	(d)	j is not continuous.
10	Let	(X,d) be compact metric space. $f:X$	→ (()	(∞) be continuous then $\exists \epsilon > 0$ such that
	-	$f(x) > \epsilon, \forall x \in X$		$f(x) < \epsilon, \forall x \in X$
		$f(x) \ge \epsilon, \forall x \in X$		$f(x) \le \epsilon, \forall x \in X$
	, ,		· /	
11	Let	(X,d) and (Y,d_1) be metric space, the	hen a	ny Lipschitz function $f: (X, d) \rightarrow (Y, d_1)$
	is			, , , , , , ,
	()	Continuous but not uniformly	(I)	Uniformly continuous
	(a)	continuous	(b)	
	(c)	Not uniformly continuous	(d)	discontinuous
12		pint $x \in X$ is called fixed point of the		_
	(a)	T(x) = x	(b)	T(x) > x
	(c)	T(x) < x	(d)	T(x) = 0
13	Let	$f: X \to Y$ is such that f is continuous		
	(a)	x_n does not converges to x		$x_n \to x$
	(c)	(x_n) may not be convergent	(d)	$x_n \to x$ for finite set X only
14	Let (X, d) and (Y, d) be two metric spaces $f: X \to Y$ is continuous then for each			
		Open subset of G of X , $f(G)$ is		Closed subset of H of X , $f(H)$ is open
	(a)	open in Y .	(b)	in Y
		Open subset of G of Y , $f^{-1}(G)$ is	(1)	Open subset of G of Y, $f^{-1}(G)$ is closed
	(c)	open in Y .	(d)	in Y.
15	Let (X, d) and (Y, d_1) be two metric spaces. and $f: X \to Y$ is continuous for each $B \subseteq X$			
	then			
	(a)	$f^{-1}(\underline{B}) \subseteq \underline{f^{-1}(B)}$	(b)	$f(\underline{B}) \subseteq \underline{f(B)}$
	(0)	$f(B) \subseteq f(\underline{B})$	(d)	$f(\underline{B}) = \overline{f(B)}$
	(6)	· · · · · · · · · · · · · · · · · · ·	()	

16	Let (X, d) be a complete metric space and $T: X \to X$ be such that $d(T(x), t(y)) < x$			$X \to X$ be such that $d(T(x), t(y)) <$	
	d(x,y) then				
	(a)	T does not have a unique point	(b)	T has two fixed points	
	(c)	T has multiple fixed point	(d)	T has unique fixed points.	
Let (X, d) and (Y, d_1) be two metric spaces. and $f: X \to Y$ is continuous, if (X, d)					
	compact metric space then $f: X \to Y$ is				
	(a)	Uniformly continuous	(b)	discontinuous	
	(c)	Continuous but not uniformly	(d)	May or may not be uniformly	
	(C)		(u)	continuous.	
18				crete metric space and $f: X \to Y$ is such	
	that	$\rho\big(f(x),f(y)\big) \le c \; d(x,y), c \in [0,1] \; \mathbf{T}$	hen fo	or $x \in B\left(x_0, \frac{1}{c}\right)$, $x_0 \in X$	
	(a)	f is identify function	(b)	f(x) = 0	
	(c)	f(x) = 1	(d)	f is constant function	
19	Let	$f: [2,3] \rightarrow [2,3]$ be differential function	on an	d $ f'(x) < 0.5$, then f is contraction on	
	(a)	[2,3]	(b)	[2.5, 3] only	
	(c)	[2,2.5] only	(d)	f is not contraction.	
20				\rightarrow Y be continuous functions then the set	
	U =	$\{x \in X: f(x) \neq g(x)\}$ then			
	(a)	U is closed subset of X	(b)	II is onen subset of Y	
(a) U is closed subset of X (b) U is open subset of X				o is open subset of A	
	(c)	of X	(d)	U is neither open nor closed subset of X	
		Of A			
21	Let	(X,d) and (Y,ρ) be metric spaces, f	, g: X	\rightarrow Y be continuous functions. Let U be	
		open subset of X and V be any open	_		
	(a)	$\left(f^{-1}(V)\right)^{\circ} \subseteq f^{-1}(V^{\circ})$	(b)	$(f^{-1}(II))^{\circ} \subset f^{-1}(II^{\circ})$	
			(3)	$\left(f^{-1}(U)\right)^{\circ} \subseteq f^{-1}(U^{\circ})$ $f^{-1}(U^{\circ}) \subseteq \left(f^{-1}(U)\right)^{\circ}$	
	(c)	$f^{-1}(V^{\circ}) \subseteq (f^{-1}(V))^{\circ}$	(d)	$f^{-1}(U^{\circ}) \subseteq (f^{-1}(U))^{\circ}$	
22	T	(7 J) J (V J) 1 4 *	1. 41	L-Af (7 J) . (V J) l	
22	Let (Z, d) and (Y, d_1) be metric spaces such that $f: (Z, d) \to (X, d_1)$ be continuous				
		re d is usual distance on N then met	1		
	(a)	Usual only Disprets only	(b)	Euclidian only	
	(c)	Discrete only	(d)	Any metric	
23	Lat	matrics d. and d. are equivalent me	trice 1	then identity man i on Y defined as	
23	Let metrics d_1 and d_2 are equivalent metrics then identity map i on X defined as $i: (X, d_1) \to (X, d_2)$ and $i: (X, d_2) \to (X, d_1)$ such that				
	$(\Lambda, u_1) \cdot (\Lambda, u_2)$ and $(\Lambda, u_2) \cdot (\Lambda, u_1)$ such that				

	(a)	Both identity maps are discontinuous	(b)	Both identity maps are continuous		
	(a)	Both identity maps are	(4)	One metric is usual and other discrete		
	(c)	continuous for usual distance only	(d)	only		
24	Let	(X, d) be a metric space and $A \subseteq X$,	f:X	$\rightarrow R$ is continuous for $f_A(x) = d(x, A)$		
	whe	re d is usual in R and $f_A(x) = 0$ then	n			
	(a)	$x \in A$	(b)	$x \in A^{\circ}$		
	(c)	$x \in closure(A)$	(d)	A is singleton set		
25		d denotes usual distance in R and d_1				
		otes the discrete metric on R . let $i: (R$				
		$\underline{iQ} \subseteq i(\underline{Q})$		$\underline{i^{-1}(Q)} \subseteq i^{-1}(\underline{Q})$		
	(c)	$i^{-1}\left(\underline{Q}\right) \subseteq \underline{i^{-1}(Q)}$	(d)	$i\underline{Q} = i(\underline{Q})$		
2.5	. .		- 01	V. D. (1		
26	Let	(X, d) be a finite metric space, if f, g	∈ C((X,R), then		
	(a)	$f + g \in C(X, R)$, but fg may not	(b)	$f + g, f - g \in C(X, R)$, but $2f$ may		
		be in $C(X,R)$.		not be in $C(X,R)$.		
	(c)	$f + g, f - g \text{ and } 2f \in C(X, R)$	(d)	$f + g, f - g \in C(X, R)$, but fg may		
				not be in $C(X,R)$.		
27	Lot	$f: [0, 2\pi] \rightarrow D$ such that $f(t) = (aaa)$		sin sin t)		
21	(a)	$f: [0, 2\pi] \to R$, such that $f(t) = (\cos R)$ f is continuous		f is discontinuous		
	(c)	f is discontinuous at 0.	(d)	f is discontinuous at 1.		
	(0)) is discontinuous at 0.	(u)) is discontinuous at 1.		
28	$f: [a, b] \to R$, defined as $f(x) = x^2$ is uniformly continuous, where					
	_	b > 0	(b)	-		
	(c)	b = 0	(d)	$b \in Z$		
	(0)		(4)			
29	Let	(X,d) and (Y,d_1) be metric spaces an	nd suc	th that d is discrete and $f: X \to Y$ is		
	continuous, metric d_1 is					
	(a)	Any metric	(b)	also discrete		
	(c)	not discrete	(d)	usual only.		
30	Let	$f: R \to R$ defined as $f(x) = 3x - 2$ th	nen fi	$\mathbf{xed} \mathbf{\ point} \mathbf{\ of} f \mathbf{\ is}$		
	(a)	0	(b)	1		
	(c)	2	(d)	3		
31	Let $X_1 = [0,1]$; $Y = [0,\infty)$; $X_2 = (0,1) \cup (2,3)$, $Y_2 = (0,1)$, $X_3 = (0,1)$, $Y_3 = \{0,1\}$. Then					
	there exists a continuous onto function from $X_i \rightarrow Y_i$ when					
	(a)	i = 2	(b)	i = 3		

	(c)	i = 1,2	(d)	i = 1,2,3		
32	Let	Let (X, d) be a metric space where X is finite set and (Y, d') be any metric space. Let				
	f:X	\rightarrow Y. Then false statement is				
	(a)	f is continuous on X	(b)	f(X) is bounded		
	(c)	If A is open in X , $f(A)$ is open in Y	(d)	If B is closed in Y, $f^{-1}(B)$ is closed in X		
33	Let	(X, d) and (Y, d_1) be metric spaces, so	uch tł	$\mathbf{nat} \ X \ \mathbf{is} \ \mathbf{finite} \ \mathbf{and} \ \ f \colon X \to Y \ \mathbf{is}$		
	cont	tinuous, then				
	(a)	Y is also finite	(a)	Y is infinite		
	(c)	Y is any metric space	(c)	$d = d_1$		
34	Let	(X, d) and (Y, ρ) be metric spaces, f :	$X \to X$	Y is continuous at $x \in X$. Let U is any		
	opei	n subset of Y containing $f(x)$, then the	iere is	s an open set $V \subset X$, such that		
	(a)	$f(V) \subseteq U, x \notin X$	(b)	$f(V) \subseteq U, x \in X$		
	(c)	$f(V) \supseteq U, x \notin X$	(d)	$f(V) \supseteq U, x \in X$		
35	Let	$f, g: (0,1) \to R \text{ such that } f(x) = \frac{1}{x}, g$	q(x) =	$=\sin \sin\left(\frac{1}{x}\right)$ then		
	(a)	f and g are uniformly continuous	(b)	Only one of them is uniformly continuous		
	(c)	f.g is uniformly continuous.	(d)	f and g are not uniformly continuous.		
36	Let	$f, g: R \to R$ such that $f(x) = x$ and g	g(x) =	$= x^2$ then		
	(a)	f and g are uniformly continuous	(b)	f and g are not uniformly continuous		
	(c)	only f is uniformly continuous	(d)	only g is uniformly continuous		
37	f(x)	$(x) = \frac{1}{1+x^2}$ is uniformly continuous on	R the	en		
	(a)	x > 0	(b)	x < 0		
	(c)	$x \in Q$	(d)	$x \in R$		
38	Let	(X, d) be a compact metric space and	$\mathbf{f}:X$	\rightarrow (0, ∞). (usual distance) be a		
	cont	tinuous function. If $inf inf \{f(x): x \in A\}$	X } =	m then		
	(a)	m may be zero	(b)	m > 0		
	(c)	m = 0	(d)	m may be negative		
39	Let	(N,d) and (Y,ρ) be metric spaces su	ich th	$\mathbf{nat}\ f\colon (N,d)\to (X,\rho)\ \mathbf{be\ continuous}$		
	whe	re d is usual distance on N then met	ric $ ho$ i	s		
	(a)	Usual only	(b)	Euclidian only		
	(c)	Discrete only	(d)	Any metric		
40	Let	(X,d) and (Y,ρ) be metric spaces, f	, g: X	\rightarrow Y be continuous functions such that,		

	$H = \{x \in X : f(x) = g(x)\}$, let D be dense subset of x then			
	(a)	$f(x) = 0 = g(x), \forall x \in D$	(b)	$f(x) < g(x), \forall x \in D$
	(c)	$f(x) > g(x), \forall x \in D$	(d)	$f(x) = g(x), \forall x \in D$