SEM VI

MATHEMATICS PAPER IV

QUESTION BANK

UNIT I

(1) The value of $(\frac{22}{7})$ is

(c)-1

(d) 0

(2) If $(\frac{2}{p})=1$, then

(a) $p \equiv 1 \text{ or } 7 \pmod{8}$

(b) $p \equiv 3 \text{ or } 5 \pmod{8}$

(c) $p \equiv 1 \text{ or } 7 \pmod{12}$

 $(d)p \equiv 3 \text{ or } 5 \pmod{12}$

(3) If $(\frac{3}{p})=1$, then

(a)p $\equiv 1 \text{ or } 3 \pmod{12}$

(b) $p \equiv 1 \text{ or } 7 \pmod{12}$

(c) $p \equiv 1 \text{ or } 5 \pmod{12}$

(d)p $\equiv 1 \ or \ 11 (mod \ 12)$

(4) If $(\frac{-3}{p}) = 1$, then

(a) p=6k+1

(b)p=6k+5

(c) p=8k+5

(d) cannot say

(5) If p=97, then

$$(a)\left(\frac{-1}{p}\right) = 1$$
 and $\left(\frac{2}{p}\right) = 1$

$$(b)\left(\frac{-1}{p}\right) = -1 \ and \left(\frac{2}{p}\right) = -1$$

(c)
$$\left(\frac{-1}{p}\right) = -1$$
 and $\left(\frac{2}{p}\right) = 1$

(d)
$$\left(\frac{-1}{p}\right) = 1$$
 and $\left(\frac{2}{p}\right) = -1$

(6) Which of the following is correct:

$$(a)\left(\frac{10}{83}\right) = 1 \ and \ \left(\frac{10}{53}\right) = 1$$

$$(b)\left(\frac{10}{83}\right) = -1 \ and \ \left(\frac{10}{53}\right) = -1$$

(c)
$$\left(\frac{10}{83}\right) = 1$$
 and $\left(\frac{10}{53}\right) = -1$

(c)
$$\left(\frac{10}{83}\right) = 1$$
 and $\left(\frac{10}{53}\right) = -1$ (d) $\left(\frac{10}{83}\right) = -1$ and $\left(\frac{10}{53}\right) = 1$

(7) Which of the following is correct:

$$(a)\left(\frac{15}{97}\right) = 1 \ and \ \left(\frac{15}{61}\right) = 1$$

$$(b)\left(\frac{15}{97}\right) = -1 \ and \ \left(\frac{15}{61}\right) = -1$$

(c)
$$\left(\frac{15}{97}\right) = 1$$
 and $\left(\frac{15}{97}\right) = -1$

(c)
$$\left(\frac{15}{97}\right) = 1$$
 and $\left(\frac{15}{97}\right) = -1$ (d) $\left(\frac{15}{97}\right) = -1$ and $\left(\frac{15}{61}\right) = 1$

(8) if 1<a<p , then the value of $\left(\frac{a^{p-1}}{p}\right)$ is

- (a) 1
- (b) a
- (c) p-1
- (d) p

(9) The value of $\left(\frac{2^{40}}{41}\right)$ is

- (a) 4 1
- (b) 40
- (c) 2
- (d) 1

(10) The value of $\left(\frac{2^5}{41}\right)is$

- (b) 2
- (c) 1
- (d) -1

(11) The value of $\left(\frac{(p-1)!}{p}\right)$ is

- (a) $(-1)^{\frac{p-1}{2}}$ (b) $(-1)^{\frac{p+1}{2}}$
- (c)(p-1)!
- (d) None of these

(12) The value of $\sum_{j=1}^{p-1} (\frac{j}{p})$ is

- (a) 1
- (b) -1
- (c) 0

(d)p-1

(13) In which of the following case, both congruence equations have solutions:

(a) $x^2 \equiv 3 \mod 5, x^2 \equiv 5 \mod 3$

(b) $x^2 \equiv 3 \mod 7, x^2 \equiv 7 \mod 3$

(c) $x^2 \equiv 5 \mod 11, x^2 \equiv 11 \mod 5$

(d) $x^2 \equiv 5 \mod 13$, $x^2 \equiv$

13 mod 5

- (14) If g is primitive root of odd prime p then which of the following is true:
 - (a) g is quadratic residue of p
- (b)g is quadratic non residue of p
- (c) g^{p-1} is quadratic non residue of p $\hspace{.1in}$ (d) g^{p-2} is quadratic residue of p

(15) The prime p for which $(\frac{10}{p})=1$ is

- (a) $p \equiv 19 \pmod{40}$
- (b) $p \equiv 7 \pmod{40}$
- (c) $p \equiv 1 \pmod{40}$
- (d) $p \equiv 33 \pmod{40}$

16) If p=7 and q= 13, then

- (a) $\left(\frac{-1}{pq}\right) = 1$ and $\left(\frac{2}{pq}\right) = -1$ (b) $\left(\frac{-1}{pq}\right) = -1$ and $\left(\frac{2}{pq}\right) = 1$
- (c) $\left(\frac{-1}{pq}\right) = 1$ and $\left(\frac{2}{pq}\right) = 1$
- (d) $\left(\frac{-1}{pq}\right) = -1$ and $\left(\frac{2}{pq}\right) = -1$

(17) Let a, b be positive integers which are relatively prime and b>1 be odd, then

(a	(a) a is quadratic residue of b if and only if $(\frac{a}{b})=1$.								
(b	(b) If a is quadratic residue of b then $(\frac{a}{b})=1$.								
(c	(c) If $(\frac{a}{b})=1$, thena is quadratic residue of b .								
(d	(d) None of these								
(18) Th	ne congruer	$ce x^2 \equiv a($	mod32) (with 1 ≤	$\leq a \leq 31$) is solvable for					
(a) a =	= 1,9,17,25	only	(b) a = 1,5,9,25	only					
(c	c) a=1,5,9,2	1,25 only	(d) a = 1,21	,25 only					
(19) Le	et p be an o	dd prime . T	he congruence x	$^2 + \left(\frac{p+1}{4}\right) \equiv 0 \bmod p$					
(a	ı) Is solvable	e if p is of th	e type 4k+3	(b) Is not solvable if p is	of the type 4k+3				
(0	c) Is solvabl	e if p is of th	ne type 8k+7	(d) None of these					
(20) Le	et p be a pri	ime. There e	exist integers x ,y w	ith (x,p)=1 ,(y ,p)=1 and <i>x</i>	$x^2 + y^2 \equiv 0 \bmod p$				
((a) For all pr	rime p	(b) For all	I primes of the type 4k+3					
(c) Only	for p = 2		(d) For p=2 and pr	rimes of the type 4k+3					
(21)The nu	mber of sol	utions of th	e congruence $x^2 \equiv$	$3 \ mod \ 11^2 23^2$ is					
	(a) 0	(b) 2	(c) 4	(d) 1					
(22)	The congru	ence $x^2 \equiv 3$	231 <i>mod</i> 1105 has	S					
	(a) 2 solution	ons (b) 1 solution	(c) 4 solutions	(d) no solutions				
(23)	The congru	ience $x^2 \equiv$	25 mod 1013 has						
	(a) 2 soluti	ons (b) 1 solution	(c) 4 solutions	(d) no solutions				
(24)	Which of th	ne following	is correct ?						
	(a) The qu	adratic con	gruence $x^2 \equiv 12$	mod 5 has a solution.					
	(b) The quadratic congruence $x^2 \equiv 12 \ mod \ 7$ has a solution.								
	(c) The quadratic congruence $x^2 \equiv 12 \ mod \ 35$ has a solution.								
	(d) None of these.								
(25) Which of the following is false?									
	(a) $x^2 \equiv a \mod 2$ always has a solution.								

(b) $x^2 \equiv a \mod 4$ has solution if and only if $a \equiv 1 \mod 4$								
(c) $x^2 \equiv a \bmod 2^n$, for n>2 has a solution if and only if $a \equiv 1 \bmod 8$								
(d) None of (a),(b),(c) is true.								
(26) If $x^2 \equiv a \mod 2^n$, for n>2 has a solu	tion then it has							
(a) exactly 2 incongruent solutions	(b) exactly 4 incongruent solutions							
(c)exactly 1 solution	(d) none of these							
(27) The congruence $x^2 \equiv 19 \mod 7^3$ ha	S							
(a) only one solution (b) two solu	tions (c) no solution (d) none of these							
UN	IIT II							
1) The initial integer in the symbol $[a_0, a_1, fraction is]$,,a _n] will be zero when the value of the							
(a) Positive & Greater than one	(b) Positive & less than one							
(C)Negaitive	(d) Can not say							
2)The simple continued fraction (SCF) for $\frac{11}{7}$	$\frac{35}{9}$ is given by							
(b) [0,1,1,2,2,3,3] (b) [2,1,2,1,3,3] (c) [1,1,2,2,3,3] (d) None of these							
(3) The SCF for $-\frac{73}{116}$ is given by								
(a) $[-1,2,1,2,3,4]$ (b) $[-2,1,1,2,3,4]$ (c)	[-1,1,2,1,2,3] (d) None of these							
(4) The SCF [0,1,2,3,4,3] represents								
(a) $\frac{97}{135}$ (b) $\frac{97}{139}$ (c) $\frac{34}{139}$	(d) None of these							
(5) The SCF [$-2,1,2,3,4,3$] represents								
(a) $-\frac{181}{139}$ (b) $-\frac{97}{139}$ (c)	c) $-\frac{34}{139}$ (d) None of these							
(6) The SCF [2,1,2,1,2,1,2] equals								
(a) [1,1,1,2,1,2,1,2] (b) [2,1,2,1,2,1,2,1]	(c) [2,1,2,1,2,1,1,1] (d) None of these							
(7) The SCF [2,1,2,1,2,2,1] equals								
(a) [2,1,2,1,2,1,1,1] (b) [2,1,2,1,2,3]	(c) [1,1,2,1,2,2,1] (d) None of these							

(8) If r	= [2,3,3,2] the	$\frac{1}{r}$ is given by	y					
	(a) [2,3,3,2]	(b) [½, 1/3,	1/3, 1/2]	(c) [0,	2,3,3,2]	(d) None of	of these
(9) The	e value of the	4 th convergent o	of [2,3,1	1,4,2,3]	is			
	(a) $\frac{95}{42}$	(b) $\frac{43}{19}$	(c) 2		(d) Noi	ne of these	e	
(10) If $u_6/u_5 =$	u ₆ /u ₅ represen	ts quotient of t	wo succ	essive n	umbers	in the Fil	oonacci Se	equence then
None of	(a) [2,2,2,2,2 f these]	(b) [1,1	1,1,1,1]		(c) [-1,1,	,1,1,1]	(d)
(11) W	hich of the fol	llowing stateme	ent is co	rrect:				
$(a)p_0$	$a_0 = a_0; q_0 = 1$	(b) $p_0=1$; $q_0=$	1	(c) p ₀ =	1; $q_0 = 3$	a_0	(d) p	$p_0 = a_1; q_0 = a_0$
(12) WI	hich of the following	lowing stateme	nt is cor	rect:				
(a)p ₁	$=a_1;q_1=1$	(b) $p_1=1$; $q_1=$	a_1	(c) $p_1 =$	$a_1 a_0 + 1$	$1; q_1 = a_1$	(d) p	$p_1=1; q_1=a_0$
(13) Fo	$r k \ge 1$ which	of the following	g statem	ent is co	orrect:			
(a) p	$p_{k}q_{k-1}-q_{k} p_{k-1}$	$=(-1)^k$	(b) p _k o	q_{k-1} – q_k	$p_{k-1} = (-$	·1) ^{k-1}		
(c) p _k	$q_{k-1} - q_k p_{k-1} =$	$(-1)^k a_k$	$(d) p_k q$	_{k-1} –q _k j	$o_{k-1} = (-1)^{n}$	$(1)^{k-1} a_k$		
(14) Fo	or $k \ge 2$ which	of the followin	ig staten	nent is c	orrect:			
(a) p	$p_{k}q_{k-2}-q_{k}p_{k-2}$	$=(-1)^{k-2}$	(b) pk	$q_{k-2}-q_k$	p _{k-2} =(-	·1) ^k		
(c) p _k	$q_{k-2} - q_k p_{k-2} =$	$(-1)^{k-2} a_k$	$(d) p_k q$	1 _{k-2} – q _k 1	$o_{k-2} = (-1)^{n}$	$(1)^k a_k$		
(15) WI	hich of the foll	lowing stateme	nt is cor	rect:				
(a) C ₀ C ₃ ≤ C ₅ ≤		(b) C ₁ <	$C_3 < C_5$	< C ₇	(c) C	$C_0 < C_2 < C_4$	<c<sub>6</c<sub>	$\text{(d) } C_1 \leq$
(16) Fo	r a positive int	teger 'c'; if SC	CF [a ₀ ,	a_1, \ldots	,a	$[a_0]$	a_1 ,	, $a_n + c$] then
(a) n i	is odd (b)	n is even (c)	Both (a	a) & (b)	(d)	None of	(a) & (b)	
17)7	The SICF of	$\sqrt{15}$ is given by	y					
	(b) [3, 1,3]	(b) $[3,\overline{1,6}]$	(c) [3	3,1,2,3,4	,8,5]	(d) Non	e of these	
18)	The SICF of	$\sqrt{2}-1$ is given	n by					

```
(19) If \alpha = [\overline{2,1}] then \alpha equals
       (a) 1 + \sqrt{3} (b) 2\frac{1}{2} (c) 1 - \sqrt{3} (d) None of these
     (20) The SICF of \frac{(e-1)}{(e+1)} is given by
        (a) [e,1,e,-1] (b) [0,2,6,10,14,18,...] (c) [2,1,2,1,4,1,8,...] (d) None of
these
     (21) The SICF of \frac{(e^2-1)}{(e^2+1)} is given by
                                     (b) [ 0,2,6,10,14,18,.....]
         (a) [0,1,3,5,7,9,\ldots]
        (c) [1,1,4,5,7,8.....] (d) None of these
    (22) The SICF [1,1,1,1,\ldots] represents
                                  (b) 1.1111 		 (c) \frac{1+\sqrt{5}}{2} 	 (d) None of these
              (a) 1
     (23) For n \in IN, \sqrt{n^2 + 1} =
              (a) [n, \overline{n,2n}] (b) [n, \overline{2n}]
                                                    (c) [n, \overline{1,2n}]
                                                                                        (d) None of these
    (24) Let x = [1,3,1,5,1,7,1,9,...]. If Cn = \frac{p_n}{q_n} is the n^{th} convergent of x then we know
that |x - \text{Cn}| < \frac{1}{a_n a_{n+1}}, using this inequality the rational approximation to x correct upto 3
decimal places is
               (a) \frac{34}{27} (b) \frac{301}{239} (c) \frac{267}{212}
                                                                               (d) None of these
        (25) If x = \frac{1+\sqrt{13}}{2} then x =
               (a) [2,\overline{3}] (b) [2,\overline{1,3}] (c) [2,1,\overline{3}].
                                                                         (d) None of these.
(26) If \alpha = [\ a_0\ ,\ a_1\ ,\ a_2......] and C_n = [\ a_0\ ,\ a_1\ ,\ a_2......, a_n] is the n^{th} convergent
then
             \alpha =
               (a) \lim_{n\to\infty} C_n (b) \lim_{n\to\infty} C_{n-1} (c) Both (a) and (b) (d) None of these.
          (27) If C_k = \frac{p_k}{q_k} is the k<sup>th</sup> convergent of SICF [ a_0 , a_1 , a_2 ......] then
                (a) (C_{10}, C_{11}) \subseteq (C_2, C_3) (b) (C_{10}, C_{11}) \subseteq (C_{12}, C_3)
```

(a) $[0, \overline{1,2}]$ (b) $[\overline{1,3}]$. (c) $[0, \overline{2}]$ (d) None of these

		UNI	T III	
1)Which of t	he following is the so	olution of $ au(n)$	= 4?	
(a)2	(b) 4	(c) 8	(d) 16	
2)Which of t	he following is the so	olution of $\sigma(n)$	= 4?	
(c) 1	(b) 2	(c) 3	(d) 4	
$(3)\sigma(n)=2^k,$	$k \in \mathbb{N}$ has no solut	ion for		
(a) k=1	(2) k=2	(c) k=3	(d) k=5	
(4) If the prin	$me p \equiv -1 (mod 4)$	and if $2 k$, th	en $\sigma(p^k)$ is congruent	t 4 to
(a) 0(mo	od 4) (b)	1(mod 4)	(c) 2(mod 4)	(d) cannot say
(5) Which of the	he following is not p	erfect?		
(a) $2^2(2^3-1)$	(b) $2^4(2^5 -$	- 1) (c)2 ⁶	(2^7-1)	$(d)2^{10}(2^{11}-1)$
(6)Let p and q	be distinct primes ar	nd $n=pq$. The	$n \sigma(n)$ is	
(a) pq (b) $(p$ -	+1)(q+1) (c) n+1	(d) None		
(7) Let p and q	be distinct primes a	nd $n=pq$. The	en $\tau(n)$ is	
(a)1(b)2	2(c) 4 (d)p + q			
(8) If $2^n - 1$	and $2^n + 1$ as	re both primes f	for $n \in \mathbb{N}$,then	
(a) n m	ust be odd (b)	there are infini	tely many such n	
(c) n=2	(d) None of the abo	ove		
(9) Let $F_n = 2^n$	$2^n + 1$, then for $n \neq 1$	$m, \gcd(F_n, F_m)$	is	
(a) n	(b) 2^m (c)) 1	(d) Nor	ne
(10) Let p and	q be distinct primes	and $M_n=2^n$	$-$ 1. Then gcd (M_p , M_p	$I_q)$ is
(a) 1	(b) p	(c) q	(d) n	
11)The funda	amental solution of a	$x^2 - 3y^2 = 1 \text{ is}$;	

		(a) (2, 1)	(b) (7,4)	(c) (1,	0)	(d)Non	e	
	12)	Pell's equation x	$x^2 - 13y^2 = -1$	l has				
		(d) Only one solu	ıtion		(b) no sol	ution		
		(c) infinitely man	y solutions		(d) None			
((13)	Let $\sqrt{29} = [a_0;$	$\overline{a_1, a_2, \dots a}$	$\frac{-}{n}$]. The	n (a_n –	$a_{n-1} + a_{n-2}$	$-\cdots \dots +a_2$	$-a_1$) equals
		(a) 29	(b) -1			d) None		
((14)	Pell's equation x^2	$x^2 - 30y^2 = -1$ ha	as				
		(a) only one solu	tion (b) no	solution	(c)infi	nitely many so	olutions	(d) None
(1	15)	If $\alpha = 1 + \sqrt{2}$,	$\beta = 1 - \sqrt{2} \ the$	en the P	ell numbe	ers P_n and 0	Q_n are given $lpha$	as
		(a) $P_n = \frac{(\alpha^n + \beta^n)}{2\sqrt{2}}$	$Q_n = \frac{(\alpha^n - \beta^n)^2}{2}$	<u>")</u>	(b)	$Q_n = \frac{(\alpha^n + \beta^n)}{2\sqrt{2}}$	$\frac{n}{n}$, $P_n = \frac{n}{n}$	$\frac{\chi^n-\beta^n)}{2}$
		(c) $P_n = \frac{(\alpha^n - \beta^n)}{2\sqrt{2}}$	$Q_n = \frac{(\alpha^n + \beta^n)}{2}$	<u>)</u>	(d)	None		
(1	16)	For the Pell ni	ımbers P_n and	l Q_n wit	$h n \geq 1$,	$Q_n - P_n =$		
		(a) P_{n-1}	(b) Q_{n-}	1	(c) $2P_n$	n-1	(d) None	
		If x_1, y_1 is a full ion is given by x_n			$x^2 - dy^2$	$^2=1$, then ev	ery positive so	olution of the
		(a) $y_n + x_n $	$\overline{d} = (x_1 + y_1 \sqrt{a})$	$(\overline{l})^n$	(b) x_n +	$-y_n\sqrt{d}=(x_1)$	$(y_1 + y_1 \sqrt{d})^n$	
		(c) Both (a) an	d (b)		(d) None			
(1	.8)	if $C_n = \frac{p_n}{q_n}$ (n	=0,1,2,) is th	e n^{th} co	onvergent	and k is the le	ength of the po	eriod
		Of the infinite	SCF of \sqrt{d} , the	en p_{nk-1}	, q_{nk-1}	is a solution of	$f x^2 - dy^2$	= 1
		(a) k=2, n=5	(b) k=3, n=4		(c) Both	(a) and (b)	(d)Non	e
(1	.9)	Every Carmichae	el number, an	absolute	e pseudoj	prime		
		(a) is odd	(b) has at	least 3 d	istinct prir	ne factors	(c) com	posite
		(d) (a), (b),and ((c)		-			
(2	20)	If d is divisible b		(mod 4)), then th	ne equation x	$u^2 - dy^2 = -1$	l has
		(a) no solution						
			•					