TYBSC, MATHS PAPER III, METRIC SPACES, QUESTION BANKS (SEQUENCES AND SERIES)

	Choose correct alternative in each of the following				
1	Let $f_n(x) = \sin \sin nx$ for $x \in R$ and $g_n(x) = \frac{f_n(x)}{n} \ \forall \ x \in R$. Then				
	(a) $\{f_n\}$ and $\{g_n\}$ are uniformly convergent on R				
	(b) $\{f_n\}$ and $\{g_n\}$ are not pointwise convergent on R (c) $\{g_n\}$ is uniformly convergent on R but $\{f_n\}$ is not (d) $\{f_n\}$ is uniformly convergent on R but $\{g_n\}$ is not				
_					
2	If $\{f_n\}$ is a sequence of real valued continuous functions defined on $[a, b]$ and				
	converging uniformly to f on $[a, b]$ then (a) f may not be continuous on $[a, b]$ (b) f is not bounded on $[a, b]$				
	 (a) f may not be continuous on [a, b] (b) f is not bounded on [a, b] (c) f is integrable on [a, b] (d) f is not integrable on [a, b] 				
	(e)) is integrable on [w, s]				
3	Let $f_n: [0,1] \to [0,1]$ be defined by $f_n(x) = x * \chi_n(x)$ where $\chi_n(x) = \{0 \text{ if } x \notin \{0,1\}\}$				
	$\begin{bmatrix} 0, \frac{1}{n} \end{bmatrix} \ 1 \ if \ x \in \left[0, \frac{1}{n}\right]$ (a) $\{f_n\}$ converges uniformly to 0 on $[0,1]$ (b) $\{f_n\}$ converges pointwise to 1 on $[0,1]$ but does not converge uniformly (c) $\{f_n\}$ converges uniformly to 1 on $[0,1]$ (d) $\{f_n\}$ converges uniformly to x on $[0,1]$				
4	Let $\{f_n\}$ and $\{g_n\}$ be sequences of real valued bounded functions defined on $[a,b]$. If				
	$\{f_n\}$ and $\{g_n\}$ converge uniformly to f and g respectively then				
	(a) $\{f_n * g_n\}$ converges to an unbounded function $f * g$				
	(b) $\{f_n * g_n\}$ converges to a bounded function $f * g$				
	(c) $\{f_n * g_n\}$ does not converge uniformly to $f * g$ (d) $\{f_n * g_n\}$ may not be pointwise convergent on $[a, b]$				
5	Let $f_n(x) = x^{n-1}(1-x)$, $0 \le x \le 1$ then				
	(a) $\{f_n\}$ is uniformly convergent on [0,1]				
	(b) $\{f_n\}$ is not uniformly convergent on [0,1]				
	(c) $\{f_n\}$ is not pointwise convergent on [0,1]				
	(d) $\{f_n\}$ converges pointwise to an unbounded function				
6	$\mathbf{I} \text{ of } f(x) = \begin{array}{c} x \\ x \in D \end{array}$				
	Let $f_n(x) = \frac{x}{1+nx^2}, x \in R$				
	(a) $\{f_n\}$ converges uniformly on R but $\{f_n\}$ does not converge uniformly on R				

	$\{f_n\}$ converges uniformly on R and $\{f_n\}$ also converges uniformly on R		
	$\{f_n\}$ does not converge uniformly on R but $\{f_n'\}$ converges uniformly on R		
	(d) Neither $\{f_n\}$ nor $\{f_n'\}$ converge uniformly on R		
7	Let $\{f_n\}$ be a sequence of real valued functions defined on $[a, b]$ converging uniformly		
	to a function f on $[a, b]$ then the following statement is not true		
	(a) Each f_n is bounded on $[a, b] \Rightarrow f$ is bounded on $[a, b]$		
	(b) Each f_n is differentiable on $(a, b) \Rightarrow f$ is differentiable on (a, b)		
	(c) Each f_n is continuous on $[a, b] \Rightarrow f$ is continuous on $[a, b]$		
	(d) Each f_n is integrable on $[a,b] \Rightarrow f$ is integrable on $[a,b]$		
0			
8	Let $f_n(x) = \{ nx \ if \ 0 \le x \le \frac{1}{n} \ 1 \ if \ \frac{1}{n} < x \le 1 \ $ then		
	(a) $\{f_n\}$ converges pointwise to 0(b) $\{f_n\}$ converges uniformly to 0(c) $\{f_n\}$ converges uniformly to 1(d) $\{f_n\}$ is not uniformly convergent on		
	(c) $\{f_n\}$ converges uniformly to 1 (d) $\{f_n\}$ is not uniformly convergent on		
	[0,1]		
9	Let $\{f_n\}$ be a sequence of real valued differentiable functions defined on (a,b) . Let		
	$f(x) = f(x)$ and $f_n'(x) = g(x)$ (pointwise limits)		
	If f is differentiable on (a, b) then $f' = g$ on (a, b)		
	If $\{f_n'\}$ converges uniformly to g then f is differentiable on (a,b) and $f'=g$		
	(c) If $f' = g$ on (a, b) then $\{f_n\}$ converges uniformly to f on (a, b)		
	(d) If $\{f_n\}$ converges uniformly to f then f is differentiable and $f' = g$ on (a, b)		
10	Let $\{f_n\}$ be a sequence of real valued Riemann integrable functions defined on $[a, b]$		
	and f be the pointwise limit of $\{f_n\}$		
	(a) If $\int_a^b f_n \neq \int_a^b f$ then $\{f_n\}$ does not converge uniformly to f		
	(b) If $\{f_n\}$ does not converge uniformly to f then $\int_a^b f_n \neq \int_a^b f$		
	(c) If $\int_a^b f_n \neq \int_a^b f$ then the convergence is uniform		
	If $\int_a^b f_n \neq \int_a^b f$ then the convergence is uniform If $\int_a^b f_n = \int_a^b f$ then $\{f_n\}$ converges uniformly to f		
11	If $\{f_n\}$ and $\{g_n\}$ are sequences of real valued functions defined on a nonempty subset S		
	of R which converge uniformly to f and g respectively then		
	(a) $\{f_n * g_n\}$ is uniformly convergent to $f * g$ on S if each f_n is bounded on S		
	(a) $\{f_n * g_n\}$ is uniformly convergent to f * g on S if each f_n is bounded on S		
	(c) $\{f_n * g_n\}$ need not be uniformly convergent on S		
	(c) $\{f_n * g_n\}$ need not be uniformly convergent on S (d) $\{f_n * g_n\}$ converges uniformly to $f * g$ on S iff either $f \equiv 0$ or $g \equiv 0$ on S		
12	Let $f_n(x) = \frac{nx}{1+n^2x^2}$, $\forall n \in \mathbb{N}$ and $x \in \mathbb{R}$ then $\{f_n\}$ is not uniformly convergent on		
	(a) $[1,2]$ (b) $[-2,-1]$		

	(c) (1,2)	(d) [0,1]	
13	If $\{f_n\}$ is a sequence of real valued uniformly continuous functions defined on R converging uniformly to f on R then		
	(a) f may not be uniformly conti		
	(b) f is uniformly continuous on		
	(c) f may not be continuous on H		
	(d) f is not bounded on R		
	n		
14	Let $f_n(x) = \frac{x^n}{1+x^n}$, $\forall n \in \mathbb{N}$ and $\forall x \in [0,2]$. If $f(x) = f_n(x)$ then		
		f on $[0,2]$ and f is continuous at $x=1$	
	(b) $\{f_n\}$ does not converge unifor	rmly to f on $[0,2]$ but f is continuous on $[0,1]$	
	(c) $\{f_n\}$ does not converge unifor	rmly to f on $[0,2]$ and f is not continuous on $[0,1]$	
	(d) $\{f_n\}$ converges uniformly to f	f on [0,2] and f is not continuous at $x = 1$	
15	If $\{f_n\}$ is a sequence of real valued bounded functions defined on $[a, b]$ and converging		
	uniformly to f on $[a,b]$ then		
	(a) f is bounded on $[a, b]$	(b) $glb{f(x): x \in [a, b]}$ does not exist in R	
	(c) f may not be bounded on $[a,$	b] (d) $ lub\{f(x): x \in [a, b]\}$ does not exist in R	
1.0	7 () 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	- [0.4]	
16	Let $f_n(x) = \sqrt[n]{x}$, $\forall n \in \mathbb{N}$ and $\forall x \in \mathbb{N}$		
	(a) $\{f_n\}$ converges uniformly on [0,1] (b) $\{f_n\}$ converges pointwise to a continuous function on [0,1]		
		discontinuous function on [0,1]	
	(d) $\{f_n\}$ is not pointwise convergent on [0,1]		
17	Let $\{f_i\}$ be a sequence of real value	ed functions defined on $S \subseteq R$ and $A \subseteq S$. If $\{f_n\}$	
	does not converge uniformly on S		
	(a) $\{f_n\}$ does not converge unifor		
	(b) $\{f_n\}$ is not pointwise convergent on A		
	(c) $\{f_n\}$ may converge uniformly on A		
	(d) $\{f_n\}$ is not pointwise convergent on S		
18	7.0	ctions defined on $S \subseteq R$ converges uniformly to a	
	function $f: S \to R$. If $M_n = \sup \sup$	$0\{ f_n(x) - f(x) : x \in S\} $ then	
	(a) M_n is a finite number	(b) M_n does not exist	
	$\begin{array}{c c} (\mathbf{c}) & M_n = 0 \end{array}$	(d) (M_n) is an unbounded sequence	
19	Let $f_n: R \to R$ be defined as $f_n(x)$	$= \{0 \text{ if } x \notin [-n, n] \text{ 1 if } x \in [-n, n]$	
-		f where $f: R \to R$ is defined as $f(x) = 0$	
L	() 0 n) g	- ,	

	(b) $\{f_n\}$ converges uniformly to f where $f: R \to R$ is defined as $f(x) = 1$		
	(c) $\{f_n\}$ is not pointwise convergent on R		
	(d) $\{f_n\}$ does not converge uniformly on R		
20	Let $\{f_n\}$ be a sequence of real valued functions defined on $S \subseteq R$ and $\{f_n\}$ converge to		
	f pointwise on S. Suppose there is a sequence (t_n) of real numbers such that		
	$ f_n(x) - f(x) \le t_n$ for all $n \in N$ and for all $x \in S$. If (t_n) converges to 0 then		
	(a) $\{f_n\}$ does not converge to f uniformly on S		
	(b) Can not say about the uniform convergence of $\{f_n\}$		
	(c) $\{f_n\}$ may converge uniformly to f		
	(d) $\{f_n\}$ converges to f uniformly on S		
21	Let $f(x) = \sum_{n=1}^{\infty} \frac{\cos\cos nx}{n^2}$ then		
	$\sum_{n=1}^{\infty} \frac{\cos n x}{n}$ is not uniformly convergent on [0.1] and can not be integrated		
	(a) $\lim_{n \to \infty} \frac{2n}{n^2}$ is not differently convergent on [5,2] and our not so integrated term by term		
	$\sum_{n=1}^{\infty} \frac{\cos\cos nx}{n^2}$ is uniformly convergent on [0,1] and can be integrated term by		
	(b) $\lim_{n \to \infty} \int_{-n^2}^{2n} dx = \lim_{n \to \infty}^{2n} dx = \lim_{n \to \infty}^{2n} \int_{-n^2}^{2n} dx = \lim_{n \to \infty}^{2n} \int_{-n^2}^{2n$		
	(c) $\sum_{n=1}^{\infty} \frac{\cos\cos nx}{n^2}$ is not uniformly convergent on [0,1] but $\int_0^1 \sum_{n=1}^{\infty} \frac{\cos\cos nx}{n^2} =$		
	$\sum_{n=1}^{\infty} \int_{0}^{1} \frac{\cos\cos nx}{n^{2}}$		
	$\begin{array}{c c} (\mathbf{c}) & \sum_{n=1}^{\infty} & \int_{0}^{1} \frac{\cos\cos nx}{n^{2}} \\ (\mathbf{d}) & \sum_{n=1}^{\infty} & \frac{\cos\cos nx}{n^{2}} \text{ does not exist for some } x \in R \end{array}$		
22	If $\sum_{n=1}^{\infty} f_n(x)$ is a series of real valued continuous functions defined on $[a,b]$ and		
	converging uniformly to f on $[a, b]$ then		
	(a) f is not continuous on $[a, b]$ (b) f is not bounded on $[a, b]$		
	(c) f is not integrable on $[a, b]$ (d) f is bounded on $[a, b]$		
23	The series $\sum_{n=1}^{\infty} (-x)^n (1-x)$ is		
	(a) Uniformly convergent on R		
	(b) Uniformly convergent on $[0,a]$ where $0 \le a < 1$ but not on $[0,1]$		
	Pointwise convergent on R		
	(d) Uniformly convergent on [0,1]		
24	Let $\sum_{n=1}^{\infty} f_n$ be a series of real valued Riemann integrable functions defined on $[a, b]$		
	and f be the pointwise limit of $\sum_{n=1}^{\infty} f_n$		
	(a) If $\int_a^b f = \sum_{n=1}^\infty \int_a^b f_n$ then $\sum_{n=1}^\infty f_n$ converges to f uniformly on $[a,b]$		

	(b)	If $\sum_{n=1}^{\infty} f_n$ does not converge to f uniformly on $[a,b]$ then $\int_a^b f \neq \int_a^b f$		
	(c)	$\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}$ $\sum_{n=1}^{\infty} \int_{a}^{b} \sum_{n=1}^{\infty} f_{n} = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n}$		
	(d) If $\sum_{n=1}^{\infty} f_n$ converges to f uniformly on $[a,b]$ then $\int_a^b f = \sum_{n=1}^{\infty} \int_a^b f_n$			
	J_n converges to f uniformly on $[a,b]$ then J_a $f=\sum_{n=1}^{n}J_n$			
25	The series $\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n}$			
	(a)	Converges uniformly on $(0, \infty)$		
	(b)	Converges uniformly on $[a, \infty)$ where $a > 0$		
	(c)			
	(d) Converges uniformly on $(0, a)$ where $a > 0$			
26	If { <i>f</i>	$\{f_n\}$ is a sequence of differentiable functions on $[a,b]$ such that each f_n is		
	cont	inuous on $[a,b]$ and $\sum_{n=1}^{\infty} f_n$ converges to f pointwise on $[a,b]$ then		
		$\sum_{n=1}^{\infty} f_n$ converges to f uniformly on $[a, b]$ implies $\frac{d}{dx} \sum_{n=1}^{\infty} f_n(x) =$		
	$\begin{array}{c c} (\mathbf{a}) & \sum_{n=1}^{\infty} & \frac{d}{dx} f_n(x) \end{array}$			
	(b) $\frac{d}{dx}\sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} \frac{d}{dx}f_n(x)$ implies $\sum_{n=1}^{\infty} f_n$ converges to f uniformly or			
	(d) $\sum_{n=1}^{\infty} f_n' \text{ converges uniformly on } [a, b] \text{ implies } \frac{d}{dx} \sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} \frac{d}{dx} f_n(x)$			
27	The series $\sum_{n=1}^{\infty} x^n (1-x)$			
		Converges uniformly on [0,1]		
		Is not pointwise convergent on [0,1]		
	(c)	Is uniformly convergent on $[0,a]$ where $0 < a < 1$		
	(d)	Is uniformly convergent on $[a, 1]$ where $0 < a < 1$		
28	The series $\sum_{n=1}^{\infty} \frac{x^n}{x^{n+1}}$			
	(a)	Pointwise convergent on $[1, \infty)$		
	(b)	Uniformly convergent on[0, ∞)		
	(c) Uniformly convergent on $[0,a]$ where $a < 1$			
(d) Uniformly convergent on $[a, \infty)$ where $0 < a < 1$				
29	The	series $\sum_{n=1}^{\infty} \frac{nx^2}{n^3+x^3}$ is		
	(a)	Uniformly convergent on $[0,a]$ where $a > 0$ but not on $[0,\infty)$		
	(b)	Not uniformly convergent on $[0, a]$ where $a > 0$		
	(c)	Uniformly convergent on $[0,\infty)$		
	(d)	Uniformly convergent on $[a, \infty)$ where $0 < a < 1$		

30	If $\sum_{n=1}^{\infty} a_n $ is convergent then $\sum_{n=1}^{\infty} a_n x^n$ is				
30					
	` ′	(a) Uniformly convergent on R			
	<u> </u>	(b) Uniformly convergent on any closed and bounded interval			
	(c)	Uniformly convergent on $[-a, a]$ w			
	(d) Pointwise convergent on any closed and bounded interval				
31	If th	be nower series $\sum_{n=0}^{\infty} c_n x^n$ converg	ges at $x = 1$ and diverges at $x = 2$ then the		
J1		wer series $\sum_{n=0}^{\infty} a_n x^n $ converges	$\frac{1}{1}$ $\frac{1}$		
	(a)	For all $x \in R$ with $ x < 2$ and dive	proof for all $x \in D$ with $ x > 2$		
	<u> </u>		9		
Ans	(b) (c)	For all $x \in R$ with $ x < 1$ and dive For all $x \in R$ with $ x < 1$ and dive			
Alls	(d)	For all $x \in R$ with $1 < x < 2$	$\frac{1}{2} \frac{1}{2} \frac{1}$		
	(u)	For all $x \in R$ with $1 < x < 2$			
32	If th	ne power series $\sum_{n=0}^{\infty} c_n x^n$ has radi	ius of convergence 1 then		
	(a)	The power series converges at $x =$			
	(b)				
	 (b) The power converges at x = 1 and diverges at x = -1 (c) The power diverges at x = 1 and converges at x = -1 				
	(d)		e and divergence at $x = 1$ and $x = -1$		
	(a) Can not say about the convergence and divergence at $x = 1$ and $x = 1$				
33	If R	is the radius of convergence of the p	power series $\sum_{n=0}^{\infty} c_n x^n$ then the radius of		
	con	vergence of the series $\sum_{n=1}^{\infty} nc_n x^{n-1}$	⁻¹ is		
	(a)	R	(b) \sqrt{R}		
	(c)	R+1	(\mathbf{d}) R^2		
34	$\sum_{n=1}^{\infty}$	$a_n x^n$ has radius of convergence	R_1 and $\sum_{n=0}^{\infty} b_n x^n$ has radius of convergence		
	R_2^{n-1}	o n			
	Let	$c_n = \{a_n \text{ if } n \text{ is even } b_n \text{ if } n \text{ is odd } \}$	then the radius of convergence of the power		
	seri	es $\sum_{n=0}^{\infty} c_n x^n$ is			
	(a)	$R_1 + R_2$	(b) $\{R_1, R_2\}$		
	(c)	$\{R_1, R_2\}$	$ (\mathbf{d}) R_1 - R_2 $		
35	Let	$f(x) = \sum_{n=0}^{\infty} c_n x^n $ for $ x < R$. If $f(x) = \sum_{n=0}^{\infty} c_n x^n $ for $ x < R$.			
	(a)	$c_n = 0$ for all $n \in N$	(b) $c_n = 0$ when n is odd		
	(c)	$c_n = 0$ when n is even	(d) $c_n \neq 0$ for any $n \in N$		
36	If R	is the radius of convergence of the p	power series $\sum_{n=0}^{\infty} c_n x^n$ then radius of		
	convergence of the power series $\sum_{n=0}^{\infty} c_n x^{nk}$ is				
	(a)	R^k	(b) <i>R</i>		
	(c)	$R^{1/k}$	$\left \mathbf{(d)} \right \frac{1}{R^k}$		
		<u> </u>	R ⁿ		
37		$(-1)^n x$.n		
	Con	sider the power series $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$	– then		
	(a)	Radius of convergence $= 1$ and into	terval of convergence is [-1,1]		
	(b) Radius of convergence = 1 and interval of convergence is $(-1,1)$				

	(c) Radius of convergence = 1 and interval of convergence is $[-1,1)$				
T	(d) Radius of convergence = 1 and interval of convergence is $(-1,1]$				
38	If α is a non-zero real number then the radius of convergence of the power series $\sum_{n=0}^{\infty} \alpha^n x^n$ is			of convergence of the power series	
	(a)	$ \alpha $	(b)	$ \alpha ^{1/2}$	
	(c)	$\frac{1}{ \alpha }$	(d)	∞	
39	The	The series expansion $log log (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$ is valid if			
	(a)	$ x \le 1$	(b)	$ x \le A \text{ for } A > 0$	
	(c)	x < 1	(d)	x > 0	
40 The series expansion $1 + 2x + 3x^2 + \cdots + nx^{n-1} + \cdots = \frac{1}{(1-x)^2}$ is valid in			$n-1 + \cdots = \frac{1}{(1-x)^2}$ is valid in		
	(a)	R	(b)	(-1,1)	
	(c)	[-1,1)	(d)	Any closed and bounded interval	