

	(b)	$\left\{f_{n}\right\}$ converges uniformly to f where $f: R \rightarrow R$ is defined as $f(x)=1$		
	(c)	$\left\{f_{n}\right\}$ is not pointwise convergent on R		
	(d)	$\left\{f_{n}\right\}$ does not converge uniformly on R		
20	Let $\left\{f_{n}\right\}$ be a sequence of real valued functions defined on $S \subseteq R$ and $\left\{f_{n}\right\}$ converge to f pointwise on S. Suppose there is a sequence $\left(t_{n}\right)$ of real numbers such that $\left\|f_{n}(x)-f(x)\right\| \leq t_{n}$ for all $n \in N$ and for all $x \in S$. If $\left(t_{n}\right)$ converges to 0 then			
	(a)	$\left\{f_{n}\right\}$ does not converge to f uniformly on S		
	(b)	Can not say about the uniform convergence of $\left\{f_{n}\right\}$		
	(c)	$\left\{f_{n}\right\}$ may converge uniformly to f		
	(d)	$\left\{f_{n}\right\}$ converges to f uniformly on S		
21	Let $f(x)=\sum_{n=1}^{\infty} \frac{\cos \cos n x}{n^{2}}$ then			
	(a)	$\sum_{n=1}^{\infty} \frac{\cos \cos n x}{n^{2}}$ is not uniformly convergent on [0,1] and can not be integrated term by term		
	(b)	$\sum_{n=1}^{\infty} \frac{\cos \cos n x}{n^{2}}$ is uniformly convergent on $[0,1]$ and can be integrated term by term		
	(c)	$\sum_{n=1}^{\infty}$ $\frac{\cos \cos n x}{n^{2}}$ is not uniformly convergent on $[0,1]$ but \int_{0}^{1} $\sum_{n=1}^{\infty}$ $\frac{\cos \cos n x}{n^{2}}=$ $\sum_{n=1}^{\infty}$ $\int_{0}^{1} \frac{\cos \cos n x}{n^{2}}$ \sum_{∞}^{∞} $\underline{\cos \cos n x}$		
	(d)			
22	If $\sum_{n=1}^{\infty} \quad f_{n}(x)$ is a series of real valued continuous functions defined on $[a, b]$ and converging uniformly to f on $[a, b]$ then			
	(a)	f is not continuous on $[a, b]$	(b)	f is not bounded on $[a, b]$
	(c)	f is not integrable on [a, b]	(d)	f is bounded on [a,b]
23	The series $\sum_{n=1}^{\infty} \quad(-x)^{n}(1-x)$ is			
	(a)	Uniformly convergent on R		
	(b)	Uniformly convergent on [0,a] where $0 \leq a<1$ but not on [0,1]		
	(c)	Pointwise convergent on R		
	(d)	Uniformly convergent on [0,1]		
24	Let $\sum_{n=1}^{\infty} \quad f_{n}$ be a series of real valued Riemann integrable functions defined on [a, b] and f be the pointwise limit of $\sum_{n=1}^{\infty} \quad f_{n}$			
	(a)	If $\int_{a}^{b} f=\sum_{n=1}^{\infty} \quad \int_{a}^{b} \quad f_{n}$ then $\sum_{n=1}^{\infty} \quad f_{n}$ converges to f uniformly on $[a, b]$		

	(b)	If $\sum_{n=1}^{\infty} \quad f_{n}$ does not converge to f uniformly on $[a, b]$ then $\int_{a}^{b} \quad f \neq$ $\sum_{n=1}^{\infty} \quad \int_{a}^{b} \quad f_{n}$
	(c)	$\int_{a}^{b} \quad \sum_{n=1}^{\infty} \quad f_{n}=\sum_{n=1}^{\infty} \quad \int_{a}^{b} \quad f_{n}$
	(d)	If $\sum_{n=1}^{\infty} \quad f_{n}$ converges to f uniformly on $[a, b]$ then $\int_{a}^{b} f=\sum_{n=1}^{\infty} \quad \int_{a}^{b} f_{n}$
25	The series $\sum_{n=1}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{n}}$	
	(a)	Converges uniformly on ($0, \infty$)
	(b)	Converges uniformly on $[a, \infty)$ where $a>0$
	(c)	Does not converge uniformly on [a, ∞) where $a>0$
	(d)	Converges uniformly on ($0, a$) where $a>0$
26	If $\left\{f_{n}\right\}$ is a sequence of differentiable functions on $[a, b]$ such that each $f_{n}{ }^{\prime}$ is continuous on $[a, b]$ and $\sum_{n=1}^{\infty} \quad f_{n}$ converges to f pointwise on $[a, b]$ then	
	(a)	$\sum_{n=1}^{\infty} \quad f_{n}$ converges to f uniformly on $[a, b]$ implies $\frac{d}{d x} \sum_{n=1}^{\infty} \quad f_{n}(x)=$ $\sum_{n=1}^{\infty} \quad \frac{d}{d x} f_{n}(x)$
	(b)	$\frac{d}{d x} \sum_{n=1}^{\infty} \quad f_{n}(x)=\sum_{n=1}^{\infty} \quad \frac{d}{d x} f_{n}(x)$ implies $\sum_{n=1}^{\infty} \quad f_{n}$ converges to f uniformly on $[a, b]$
	(c)	$\frac{d}{d x} \sum_{n=1}^{\infty} \quad f_{n}(x)=\sum_{n=1}^{\infty} \quad \frac{d}{d x} f_{n}(x)$
	(d)	$\sum_{n=1}^{\infty} \quad f_{n}^{\prime}$ converges uniformly on $[a, b]$ implies $\frac{d}{d x} \sum_{n=1}^{\infty} \quad f_{n}(x)=$ $\sum_{n=1}^{\infty} \quad \frac{d}{d x} f_{n}(x)$
27	The series $\sum_{n=1}^{\infty} \quad x^{n}(1-x)$	
	(a)	Converges uniformly on [0,1]
	(b)	Is not pointwise convergent on [0,1]
	(c)	Is uniformly convergent on $[0, a]$ where $0<a<1$
	(d)	Is uniformly convergent on [$a, 1$] where $0<a<1$
28	The series $\sum_{n=1}^{\infty} \quad \frac{x^{n}}{x^{n}+1}$	
	(a)	Pointwise convergent on $[1, \infty)$
	(b)	Uniformly convergent on $[0, \infty$)
	(c)	Uniformly convergent on [0,a] where $a<1$
	(d)	Uniformly convergent on [a, ∞) where $0<a<1$
29	The series $\sum_{n=1}^{\infty} \frac{n x^{2}}{n^{3}+x^{3}}$ is	
	(a)	Uniformly convergent on [0,a] where $a>0$ but not on [0, ∞)
	(b)	Not uniformly convergent on [$0, a$] where $a>0$
	(c)	Uniformly convergent on [0,)
	(d)	Uniformly convergent on [a, ∞) where $0<a<1$

	(c)	Radius of convergence $=1$ and interval of convergence is $[-1,1)$		
T	(d)	$\text { Radius of convergence }=1 \text { and interval of convergence is }(-1,1]$		
38	If α is a non-zero real number then the radius of convergence of the power series $\sum_{n=0}^{\infty} \quad \alpha^{n} x^{n}$ is			
	(a)	$\|\alpha\|$	(b)	$\|\alpha\|^{1 / 2}$
	(c)	$\frac{1}{\|\alpha\|}$	(d)	∞
39	The series expansion $\log \log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \cdot .$. is valid if			
	(a)	$\|x\| \leq 1$	(b)	$\|x\| \leq A$ for $A>0$
	(c)	$\|x\|<1$	(d)	$x>0$
40	The series expansion $1+2 x+3 x^{2}+\cdots \cdots \cdot+n x^{n-1}+\cdots \cdot=\frac{1}{(1-x)^{2}}$ is valid in			
	(a)	R	(b)	$(-1,1)$
	(c)	$[-1,1)$	(d)	Any closed and bounde

