TYBSC, MATHS PAPER III (TOPOLOGY OF METRIC SPACE) QUESTION BANKS (CONNECTEDNESS)

	Cl					
1	_	ose correct alternative in each of the				
1	_	Let (X, d) be a finite metric space. If $A \subseteq X$ is connected then				
	(a)	A = X	(b)	$A \neq X$		
	(c)	A is singleton set.	(d)	A has more than one element.		
2	If A	If A, B are connected subsets of R with usual metric such that $A \cap B \neq \emptyset$, then				
	(a)	Only $A \cup B$ is connected.	(b)	Only $A \cap B$ is connected.		
	(c)	Both $A \cup B$ and $A \cap B$ are connected.	(d)	Only $A + B$ is connected.		
3	If A	If A is connected subset of a metric space X then is also connected.				
	(a)	<u>A</u>	(b)	Interior of A.		
	(c)	Both (a) and (b).	(d)	None of these.		
4	An	open ball in a metric space is				
	(a)	Connected	(b)	Path connected		
	(c)	Both (a) and (b).	(d)	Compact.		
5	Let	(X, d) be a connected metric space a	$\mathbf{nd} \ f$:	$X \to Z$ be a continuous map. Then		
	()	C		c •		
	(a)	f is onto.	(b)	f is one-one.		
	(c)	f is bijective.	(d)	f is constant.		
6	A li	A line is				
	(a)	Convex.	(b)	Connected.		
	(c)	Path connected.	(d)	convex, connected, path connected		
7	If A is path connected subset of \mathbb{R}^n then which of the following set is not path			h of the following set is not path		
	con	connected.				
	(a)	A^0	(b)	<u>A</u>		
	(c)	<u>A</u> ∪ A	(d)	None of these.		
8	The	$\underline{\underline{A}} \cup A$ set $R^2 - \{(x, y)/y = 0\}$ is				
	(a)	Path connected .	(b)	Connected.		
	(c)	Not connected.	(d)	Semi-closed.		
9	The	components of the set $(0,1) \cup \{2,3\}$	are			
	(a)	(0,1)	(b)	{2},{3}		
	(c)	(0,1), {2} and{3}	(d)	None of these.		
10	If A	is connected subset of Q , with usual	dista	nce, then		
	(a)	A = Q	(b)	A is an infinite bounded set.		
	(c)	A is singleton set.	(d)	None of these.		
11	Met	Metric space $R^2 \setminus \{0\}$, with Euclidean metric, is				
	(a)	Connected and path connected.	(b)	Connected but not path connected.		
	(c)	Neither connected nor path connected.	(d)	path connected but not connected.		
			1	<u> </u>		

12	Let X be connected metric space and Y be any metric space then the product space					
	$X \times Y$					
	(a) Is connected.	(b)	May not be connected.			
	(c) Must be connected.	(d)	never connected			
13	Every convex set is					
	(a) Connected.	(b)	Path connected.			
	(c) Both (a) and (b).	(d)	None of these.			
14	Continuous image of a connected set is a	lways	•••			
	(a) Path connected.	(b)	Not path connected.			
	(c) Not connected.	(d)	None of these.			
15	_	If a metric space X can be written as union of two non-empty, disjoint and open sets				
	then					
	(a) X is connected.	(b)	X is separated.			
	(c) X is path connected.	(d)	None of these.			
16	Every continuous function on a connect	ed me				
	(a) One-one.	(b)	Onto.			
	(c) Bijective.	(d)	Constant.			
17	<u>-</u>	Let A, B and C are subsets of a metric space X such that $A \subseteq B \subseteq C$ and A, C are				
	connected then					
	(a) Set B may not be connected.	(b)	Set B is not connected.			
	(c) Set B is also connected.	(d)	None of these.			
18	If A, B are connected subsets of R^2 with Euclidean metric such that $A \cap B \neq \emptyset$, then					
	(a) Both $A \cup B$ and $A \cap B$ are	(b)	only $A \cup B$ is connected but $A \cap B$ need			
	connected.	(,,,	not be.			
	Only $A \cap B$ is connected but $A \cup A$	(d)	neither $A \cup B$ nor $A \cap B$ connected.			
	B need not be.	, ,				
19	If A, B are closed subsets of a metric space X then $A \cap B^c$ is					
	(a) Connected.		Closed.			
	(c) Separated.	(d)	None of these.			
20		If the characteristic function χ_A is continuous on a non-empty proper subset A of				
	metric space X then	1				
	(a) X is not connected.	(b)	X is connected.			
	(c) X is path connected.	(d)	X is compact.			
21		$\mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$ is not path connected if				
	(a) n=3	(b)	n=4			
	(c) n=1	(d)	None of these.			
22	The set $R^2 \setminus Q \times Q$, Euclidean metric, is.	1				
	(a) Not connected.	(b)	Not path connected.			
	(c) Connected.	(d)	None of these.			
23		Let (X, d) be a connected metric space and $f: X \to N$ be a continuous map. Then				
45						
23	Let (X, d) be a connected metric space a (a) f is onto. (c) f is bijective.	(b)	$X \rightarrow N$ be a continuous map. Then f is one-one. f is constant.			

24	The unit circle S^1 , usual distance, is			
	(a)	Compact and connected	(b)	Connected but not compact.
	(c)	Compact but not connected.	(d)	Neither compact nor connected.
25	If A, B are connected subsets of R with usual metric such that $A \cap B \neq \emptyset$, then the			
	follo	owing set may not be connected.		
	(a)	$A \cup B$	(b)	$A \cap B$
	(c)	$A \backslash B$	(d)	$A \times B$ in R^2 (Euclidean distance)
26	The	The component of the set $R \setminus Q$ is		
	(a)	An infinite set.	(b)	A set having more than one element.
	(c)	A singleton set.	(d)	Having exactly two points.