QUESTION BANK

TYBSC -SEM VI, MATHS-I

11. Non- zero vectors $z_1 \& z_2$ are perpendicular iff

- 23. f(z) = Im Z, f'(z) exists
 - (a) $\forall z \in \mathbb{C}$ (b) only at z = 0 (c) no where on \mathbb{C} (d) exists only on imaginary axix
- 24. $f(z) = z \bar{z}$, f'(z) exists
 - (a) only at 0 (b) only at i (c) on \mathbb{C} (d) nowhere on \mathbb{C}
- 25. $f(z) = e^{-x}e^{-iy}$
 - (a) f'(z) exists no where on \mathbb{C} (b) f'(z) exists on \mathbb{C}
 - (c) f'(z) exists only at i (d) None of these
- 26. $f(z) = x^3 + i(1 y)^3$. Then
 - (a) f is differentiable only at $z = f'(z) = 3x^2$
 - (b) f is differentiable only at z = i, $f'(z) = 3z^2$
 - (c) f is differentiable only on $\mathbb{C}\&f'(z) = 3x^2 i (1-y)^2$
 - (d) f is differentiable only at z = 0&f'(z) = 0

27.
$$f(z) = \begin{cases} \frac{\overline{z}^2}{z} & z \neq 0\\ 0 & otherwise \end{cases}$$

- (a) Cauchy Riemann equations are not satisfied at (0,0)
- (b) Cauchy Riemann equations are satisfied at (0,0) but f is not differentiable at (0,0)
- (c) Cauchy Riemann equations are not satisfied at (0,0) but f is differentiable at (0,0)
- (d) None of the above
- (28) $F(z) = x^3 + 3xy^2 + i(y^3 + 3x^2y)$ is analytic
- a) only at 1, i b) only at 0 c) only at 0, 1, i d) nowhere on *
- (29) f(z) = (2x y) + i(Ax + By) is an entire function then
- a) A = 1 , B = 1 b) A = 3 , B = 3 c) A = 2 , B = 2 d) none of these
- (30) $f(z) = e^y \cos x + i e^y \sin x, \ g(z) = z + \bar{z}$. Then
- a) Both f, g are analytic on $\mathbb C$ b) f analytic on $\mathbb C$ but g is not analytic on $\mathbb C$
 - c) f not analytic on $\mathbb C$ but g is not analytic on $\mathbb C$ d) Both f, g are not analytic on $\mathbb C$

(31)
$$f(z) = (z^2 - 2)e^{-x}e^{-iy}$$
, $g(z) = xy + iy$ $h(z) = 2xy + i(x^2 - y^2)$

- a) f is an entire function, g and h are no where analytic
- b) g is an entire function, f and h are no where analytic
- c) h is an entire function, f and g are no where analytic
- d) f, g, h all of them are analytic on \mathbb{C}

(32)
$$f(z) = x^3 + 3xy^2 + i(y^3 + 3x^2y)$$
 is

- a) an entire function b) analytic on the unit disk
 - c) differentiable an x-axis d) differentiable on x & y axes but analytic nowhere

(33)	The singular point of $f(z) = \frac{2z+1}{z(z^2+1)}$ are
a)	only at 0 b) $0, \pm i$ c) only at $\pm i$ d) None of these
(3	4) $f(x+iy) = x^3 - 3xy^2 + i(3x^2y - y^3)$
a)	f is analytic on \mathbb{C} b) f is analytic only on the unit disk
	c) f is analytic only on $\mathbb{C}\setminus\{0\}$ c) None of these
(3	The singular point of $f(z) = \frac{z^2+1}{(z+2)(z^2+2z+2)}$ are
a)	$\pm i$ b) -2 , $-1 \pm i$ c) 0 d) None of these
(3	6) $u(x,y) = x^2 - y^2, v = 2xy$
a)	v & u are harmonic conjugates of each other
b)	u is a harmonic conjugate of $\frac{v}{u}$ but v is not
c)	v is a harmonic conjugate of $\frac{u}{v}$ but u is not
d)	None of these
(3	7) $u = ax^3 + bxy$. For u to be harmonic, the value of a and b are
a)	a=1 $b=1$ b) $a=2$ $b=2$ c) $a=3$ $b=3$ d)none of these
(3	8) $f(z) = \frac{1}{z}$, $z \neq 0$. level sets of level sets of f real and imaginary parts of f are
a)	Not orthogonal b) orthogonal c) equal c) None of these
(3	9) The image of a line under a fractional linear transformation is
a)	a line b) a circle c) a line or a circle d) None of these
(4	The image of a circle under a Mobius transformation is
a)	a point b) a line c) a circle d) a line or a circle
(4	1) $f(z) = i \frac{1-z}{1+z}$. The image of the unit circle under is
a)	b) unit circle c) the imaginary axis d) the real axis
(42)	The value of integral $\int_C \frac{e^z}{z-2}$, where C is the circle $ z = 3$, described in positive sense is
_	a) $2\pi i \ e^2$ (b) $2\pi i$ (c) e^2 (d) None of these If f is analytic in a simply connected domain D , then for every closed path C in D we have
(a)	$\int_C f(z)dz = 1$ (b) $\int_C f(z)dz = 0$ (c) $\int_C f(z)dz \neq 0$ (d) None of these

(54)	_	z dz = I, (b)			rve in the comp	plex plane. T	hen $I =$
(55)		$\int_{\mathcal{C}} \frac{1}{(z^2+4)(z^2+4)}$	$\frac{1}{(z^2+9)} dz$ who	ere C: z = 1	equals		
	(a)	$2\pi i$	(b) 1	(c) 0	(d) None of the	nese	
(56)	$I = \int$	$\int_C \frac{z+1}{z^2(z-1)} dx$	dz where C :	$ z-2 = \sqrt{2}$	traversed cou	nter clockwis	se, then $I =$
	(a)	$4\pi i$	(b) 0	(c) 1	(d) π		
(57)	- (-	-,	z = 1 equ				
	(a)	π	(b) $-\pi$	$(c)-\frac{\pi i}{2}$	(d) None of the	nese	
		- /			$y = \pm 2$ equals		
					none of these	_	
(59)					he Taylor series	s of f at	
				rivative of j	-		
	K:		κ:		ĸ:		(d) None of these
(60)					is		
				**	(d) None of the	nese	
(61)	$g^{(3)}(0)$	0) for $g(z)$	$=\sum_{n=0}^{\infty}\frac{(1+i)^n}{n}$	$\frac{1}{2}z^n$ is			
		5			$(c)^{\frac{2}{3}}(1-i)$	(d) Noi	ne of these
(62)), then			
	$(a)f^{(n)}($	(z) exists in	nD	(b) <i>f</i>	$f^{(n)}(z)$ does no None of these	t exists in D	
	(c) $f^{(n)}$	$(z)=0, \ \forall$	$n \in \mathbb{N}$ in D	(d)	None of these		
(63)	1-z	+ z ²	for z < 1	lis			
	(a)	$\frac{1}{1-z}$	(b) $\frac{1}{i}$	_ (c	$\frac{1}{i+z}$	$(d) \frac{1}{1+a}$	
(64)	For $ z $	< 1. power	-، er series repre	esentation of	$\frac{1}{1}$ is	172	
					$\sum_{n=0}^{(1-z)^2} (-1)^n z^n$	(d) None (of these
				sentation of	_	(a) Trone (or those
					(= . =)		
	(c) $\sum_{n=1}^{\infty}$	$_0(-1)^n z^n$	02 1	(d) D	$-2z + 3z^2 \dots$ oes not exist in	the given reg	gion
(66)	The Tay	ylor's expa	nsion of $f(z)$	$z^8 e^{3z}$ are	bound $z = 0$ is		
	(a)	Does not	exist (b) \sum	$\sum_{n=0}^{\infty} \frac{3^n}{1} Z^{n+8}$	(c) $\sum_{n=0}^{\infty} \frac{8^n}{n!} z^n$.+3 (d) Noi	ne of these
(67)		$\pm 3\pi i) =$, ,	<i>n</i> !	<i>n</i> !	,	
` /	-		(b) $-e^2$	(c) e^2	(d) e^3		
(68)	exp (2	$+\pi i/4) =$	=				

(a) $\sqrt{\frac{e}{4}(2+i)}$ (b) $\sqrt{\frac{e}{4}(4+\pi)}$ (c) $\sqrt{\frac{e}{2}(1+i)}$ (d) $\sqrt{\frac{e}{4}(4-\pi)}$
$(69) \exp\left(z + \pi i\right) =$
(a) $\exp z$ (b) 0 (c) $-\exp(z)$ (d) None of these
(70) $ \exp(-2z) < 1$ iff
(a) Re $z > 0$ (b) Re $z \ge 0$ (c) Im $z < 1$ (d) None of these
(71) If $e^z = 2$, then $z =$
(a) 0 (b) 1 (c) i (d) $z = \ln 2 + (2n+1)\pi i$ $n = 0, \pm 1, \pm 2,$
(72) If e^z is real, then $Im z =$
(a) $n\pi$, $n = 0, \pm 1, \pm 2,$ (b) $\frac{n\pi}{2}$, $n \in \mathbb{N}$ (c) i (d) $-i$
(73) $\overline{\exp(iz)} = \exp(i\bar{z}) \text{ iff}$
(a) $z = n\frac{\pi}{2}$, $n = 0, \pm 1,$ (b) $z = n\pi$, $n = 0, \pm 1, \pm 2,$ (c) $z = i$ (d) None of these
(74) $f(z) = \sin \bar{z}, g(z) = \cos \bar{z}$
(a) f is analytic on \mathbb{C} but g is not analytic anywhere on \mathbb{C}
(b) g is analytic on \mathbb{C} but f is not analytic anywhere on \mathbb{C}
(c) $f \& g$ are both analytic on \mathbb{C}
(d) Neither f nor g is analytic anywhere on \mathbb{C}
(75) $\overline{\cos(iz)} = \cos(i\bar{z})$ for
(a) $z = n \pi i, n \in \mathbb{N}$ (b) $\forall z \in \mathbb{C}$ (c) for $z = 0$ (d) None of these
(76) $\overline{\sin(\imath z)} = \sin(i\bar{z}) \text{ iff}$
(a) $z = n \pi i, n \in \mathbb{Z}$ (b) $\forall z \in \mathbb{C}$ (c) for $z = 0$ (d) None of these
(77) Roots of the equation $\sin hz = i$ are
(a) $z = \left(2n + \frac{1}{2}\right)\pi i, n \in \mathbb{Z}$ (b) $z = (n+1)\pi i, n \in \mathbb{Z}$
(c) $z = \frac{n\pi}{2}$; $n \in \mathbb{Z}$ (d) None of these
(78) Roots of the equation $\cosh z = 1/2$ are
(a) $(2n+1)\pi i, n \in \mathbb{Z}$ (b) $z = \left(2n \pm \frac{1}{3}\right)\pi i, n \in \mathbb{Z}$
(c) $(2n+1)\frac{\pi}{2}i, n \in \mathbb{Z}$ (d) $z = (2n-\frac{1}{3})\pi i, n \in \mathbb{Z}$
$(C) (2n+1) \frac{1}{2} i, n \in \mathbb{Z} $ $(d) Z = (2n+1) \frac{1}{3} n i, n \in \mathbb{Z}$
(79) The function $\frac{1}{z^2+4}$ is
a) Analytic for all $z \in \mathbb{C}$ b) Analytic only at $z = 2i$
c) Not analytic at $z = \pm 2i$ d) None of these
(100 177) ¹
(80) The series $\sum_{n=0}^{\infty} \frac{(100+75i)^n}{n!}$ is
(a) Convergent (b) Divergent (c) Absolutely Convergent (d) None of these
(81) Radius of convergent of the series $\sum_{n=0}^{\infty} \frac{n!}{n^n} z^n$ is
(a) ∞ (b) e (c) 1 (d) None of these
(82) Radius of convergence of the series $\sum_{n=0}^{\infty} \frac{(z-2i)^n}{n^n}$ is
$n = \frac{1}{n}$

	(a) ∞ (b) 1 (c) 2 (d) None of these
(83)	The radius of convergence of the power series $\sum_{n=0}^{\infty} n^2 (z-i)^{2n}$ is
	(a) 1 (b) ∞ (c) $\frac{1}{2}$ (d) None of these
(84)	If $\sum_{n=0}^{\infty} a_n z^n$ has radius of convergence R than the series $\sum_{n=0}^{\infty} a_n z^{2n}$ has radius of convergence
	(a) R^2 (b) $\frac{1}{R^2}$ (c) \sqrt{R} (d) None of these
(85)	Radius of convergence of the series $\sum_{n=0}^{\infty} \frac{z^n}{3^{n}+1}$ is
	(a) $\frac{1}{3}$ (b) 3 (c) Does not exists (d) None of these
(86)	The Laurent series for $f(z) = \frac{z+1}{z}$ around $z_0 = 0$ is
	(a) $-1 - \frac{1}{z^2}$ (b) $1 + 1/z$ (c) $1 - \frac{1}{z}$ (d) dosen't exist
(87)	The principal part in the LS expansion of $f(z) = \frac{z}{z^2 + 1}$ around $z_0 = i$ is
	(a) $\frac{1}{z+i}$ (b) $\frac{-1}{2(z+i)}$ (c) $\frac{1}{2(z-i)}$ (d) None of these
(88)	The principal part in the LS expansion of $f(z) = \frac{8z+1}{z(1-z)}$, $0 < z < 1$ is
	(a) $\frac{1}{z}$ (b) $\frac{1/8}{z}$ (c) $-1/8z$ (d) None of these
(89)	The circle of convergence for the power series $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z-3i)^n$ is
	(a) $ z - 3i < \frac{1}{4}$ (b) $ z - 3i < 1$ (c) $ z - 3i > 1$ (d) $ z - 3i > \frac{1}{4}$
(90)	$\sum_{n=0}^{\infty} \left[1 + (-1)^n + \frac{1}{2^n} \right]$ z ⁿ converges for
	(a) $ z < 1$ (b) $ z < \frac{1}{2}$ (c) $-1 < z < 1$ (d) None of these
(91)	The principal part in the Laurent series expansion of $f(z) = \frac{z+1}{z^3(z^2+1)}$ on $0 < z < 1$ is
	(a) $\frac{1}{z^3} + \frac{1}{z^2} - \frac{1}{z}$ (b) $\frac{-1}{z^3} + \frac{1}{z^2} - \frac{1}{z}$ (c) $\frac{1}{z^3} - \frac{1}{z^2} + \frac{1}{z}$ (d) None of these
(92)	The principal part in the Laurent Series expansion of $f(z) = \frac{1}{z(z-1)}$ in $0 < z < 1$ is
	(a) $\frac{1}{z}$ (b) $-\frac{1}{z}$ (c) $\frac{-1}{z^3} + \frac{1}{z^2} - \frac{1}{z}$ (d) None of these
(92)	The residue of f at $z = 0$ of $f(z) = z \cos \frac{1}{z}$ is
	a) $\frac{1}{2}$ b) $\frac{-1}{2}$ c) 1 d) None of these
(93)	If $f(z) = \frac{z^2}{(z-1)^2(z+2)}$, then $Res\ f(-2)$ is
	a) $\frac{5}{9}$ b) $\frac{4}{9}$ c) $\frac{1}{9}$ d) None of these
(94)	Let $f(z) = \frac{1}{(z-4)^4(z+3)^6}$, then $z = 4$ and $z = -3$ are the poles of the order
	a) 6 and 4 b) 3 and 4 c) 4 and 6 d) None of these
(95)	The value of the integral $\int_C \frac{z+1}{z^3-2z^2} dz$, where C is the circle $ z =1$ is equal to

a) $2\pi i$	b) $\frac{-2\pi i}{3}$	c) 0	d) None of these			
(96) The pole p	of order m of $f(z)$	$=\left(\frac{z}{2z+1}\right)^3$	is			
			= 3 c) $p = 0$, $m = 3$	d) None of these		
(97) $f(z) = \frac{\sin^2(z-1)}{(z-1)^2}$	$\frac{\ln z}{(\pi)^2}$ have pole of or	der				
a) 1	,		of these			
(98) The poles of	of the function $\frac{\sin z}{\cos z}$	are at				
	n is any integer any integer					
c) $n\pi$, n is	any integer	d)Non	e of these			
(99) The integr	$\operatorname{ral} \int_C \frac{1+z}{z(2-z)} dz$, wh	ere C is the ι	unit circle $ z = 1$ is	••••		
			d) None of these			
(100) The residue	e at $z = ia$ of $f(z)$	$=\frac{1}{(z^2+a^2)^2}$	is			
a) 0	b) $\frac{1}{4a^3}$	$c)\frac{-1}{4a^3}$	d) None of these			
(101)The residue	e at $z = 0$ of $f(z)$	$=z^2\sin\left(\frac{1}{z}\right)$	IS			
	$\frac{1}{6}$ b) $\frac{1}{6}$	1-7				
(102) The integra	al $\int_C \frac{dz}{z \sin z} dz$, wher	e <i>C</i> is the un	it circle $ z = 1$ is			
			d) None of these			
(103) The integra	al $\int_C ze^{\frac{1}{z}} dz$, where	<i>C</i> is the unit	circle $ z = 1$ is			
· .		c) 0	d) None of these			
(-	$\frac{n z}{(3)^2}$. f has a pole of					
(a) or	rder 3 at $z = 2$ (b)	order 2 at z	= 3 (c) order 2 at $z = 3$	$/_{\pi}$ (d) None of these		
	$\frac{3}{z} \cdot f$ has a pole of					
(a) order 1 at $n\pi$, $n \in \mathbb{Z}$ (b) order 2 at $n\pi$, $n \in \mathbb{Z}$ (c) order 1 at $n\pi/2$, $n \in \mathbb{Z}$ (d) None of these						
	· -	(u) None of	tilese			
	$\frac{1}{z-1} \int_{-1}^{3} \frac{Res}{z-1} f(z) =$		_			
	(b) 0 (c)		6			
_	$\frac{1}{(z-3)^2(z-3)} \cdot \underset{z=1}{\text{Res}} f(z$					
	$\frac{1}{4}$ (b) $\frac{-1}{4}$ (c) (0 (d) 1				
$(108)f(z) = e^{3/2}$		gularity of f	(b) '0' is a pole of	f		
				J		
(c) '0' is a	removable singular	ity of f	(d) None of these			

$$(109) f(z) = \frac{z^3}{z-1} \cdot \frac{Res}{z-1} f(z) =$$
(a) 0 (b) 1 (c) -1 (d) -1/₃

$$(110) f(z) = \frac{e^z}{1+z} \text{. Then}$$
(a) '0' is an essential singularity of f (b) '0' is a pole of f (c) '0' is a removable singularity of f (d) None of these
$$111) \lim_{z\to 1} \frac{3z^4 - 2z^3 + 8z^2 - 2z + 5}{z-1} = ?$$
(a) $4+4i$ (b) $4+4i$ (c) $2+2i$ (d) $2-2i$

$$112) \lim_{z\to 1} \frac{z^3 + 2z^2 + (2+2i)z + i}{z+i} = ?$$
(a) $-1+2i$ (b) $-(1+2i)$ (c) $1+2i$ (d) $1-2i$

$$113) \lim_{z\to i+1} (z^2 - 5z + 10) = ?$$
(a) $-5+3i$ (b) $-(5+3i)$ (c) $5+3i$ (d) $5-3i$

$$114) \text{ If } f(z) = \overline{z} \text{ then}$$
(a) f is analytic at $z=0$
(b) f is analytic everywhere in the complex plane except at $z=0$ (c) f is analytic everywhere in the complex plane
(d) f is not analytic at any point in the complex plane
(a) f is continuous everywhere in the complex plane
(b) f is continuous everywhere in the complex plane
(b) f is continuous everywhere in the complex plane
(15) f if f if f if f is analytic everywhere in the complex plane
(a) f is f in f

(a)
$$\frac{e^{iz}-e^{iz}}{2}$$
 (b) $\frac{e^{iz}+e^{iz}}{2}$ (c) $\frac{e^{iz}-e^{iz}}{2i}$ (d) $\frac{e^{iz}+e^{iz}}{2i}$

124) cosz =

(a)
$$\frac{e^{iz}-e^{iz}}{2}$$
 (b) $\frac{e^{iz}+e^{iz}}{2}$ (c) $\frac{e^{iz}-e^{iz}}{2i}$ (d) $\frac{e^{iz}+e^{iz}}{2i}$

125) sinhz =

(a)
$$\frac{e^z - e^{-z}}{2}$$
 (b) $\frac{e^z - e^{-z}}{2i}$ (c) $\frac{e^z + e^{-z}}{2}$ (d) $\frac{e^z + e^{-z}}{2i}$

126) coshz =

(a)
$$\frac{e^z - e^{-z}}{2}$$
 (b) $\frac{e^z - e^{-z}}{2i}$ (c) $\frac{e^z + e^{-z}}{2}$ (d) $\frac{e^z + e^{-z}}{2i}$

127) If f is integrable along a curve C whose length is L and if there exist positive number M such that $|f(z)| \le M$ on C then $|\int_C f(z)dz|$ is

(b) \leq ML (c) \leq ML² (d) non existing number.

128) If f(z) is is analytic inside and on a Circle C having the centre at a and of radius r and suppose $|f(z)| \le M$ for some constant M then $|f^n(a)|$ is \le

(a)
$$\frac{Mn!}{r^{n-1}}$$
 for all n=0,1,2,.....

(b)
$$\frac{Mn!}{r^{n}+1}$$
 for all n=0,1,2,.....

(c)
$$\frac{Mn!}{r^{n+1}}$$
 for all n=0,1,2,.....

(d)
$$\frac{Mn!}{r^n}$$
 for all n=0,1,2,.....

 $(129)\int_C \bar{z} dz$ along the line joining z=0 to z=2i is

130) $\int_C \bar{z} dz$ along the line joining z= 2i to z= 4+2i is

(d)
$$8+8i$$

131)
$$\lim_{Z \to i} z^2 + 1 =$$

132)
$$\lim_{Z \to -i} z^2 + 1 =$$

133)
$$\lim_{Z \to 2i} z^2 + 1 =$$

134)
$$\lim_{Z \to -2i} z^2 + 1 =$$

135)
$$\lim_{Z \to 3i} z^2 + 1 =$$

136)
$$\lim_{Z \to -3i} z^2 + 1 =$$

	(a) 8 ((b) -8 (c) -i (d) i				
137)	$\lim_{Z\to 2i}2z$	+ 1 =						
	(a) 4i+		2i+1 (c	e) -i (d) i			
138)	$\lim_{Z\to-2i}2z$	+1=						
	(a) -4i		22i+1 (c) -4i-1	l (d) i			
130)	If $f(z) = \frac{1}{z}$	z² than	Das	f(z) -				
137)	2		$(\text{Nes}_{z=2})$			2		
140)	If $f(z) = \frac{z}{z}$					2		
140)		2 3	12 (
141)	If $f(z) = \frac{1}{z}$							
141)	_		4 (c					
142)	If $f(z) = \frac{z}{z}$							
142)		2 2	3 (c					
1/3)	If $f(z) = \frac{z}{z}$	` ′	`	· ` `	,			
143)		ZTZ	1 (c					
144)	$\oint_C \frac{e^{2z}}{(z+1)^4}$					l ic		
177)	(- · -)	_			_			
			(b)				(d)	-πi
145)	$\oint_C \frac{e^z}{z-2} dz$							
			(b)				(d)	0
146)	$\oint_C \frac{\sin 3z}{z + \frac{\pi}{2}} dz$							
			(b)				(d)	-πi
147)	$\oint_C \frac{e^z}{z-2} dz$							
							(d)	$2\pi ie^{-2}$
148)	$\oint_C \frac{e^{3z}}{z - \pi i} d$							
			(b)				(d)	-2πi
149)	$\oint_C \frac{e^{iz}}{z^3} dz$	where	C is the	Circle	z =2 is			
			(b)				(d)	-2πi
150) $\oint_C \frac{\sin^6 z}{(z-\frac{\pi}{c})} dz$ where C is the Circle $ z =1$ is								
	(a)	$\frac{\pi i}{2}$	(b)	$\frac{-\pi i}{2\pi i}$	(c)	$\frac{3\pi i}{2\pi i}$	(d)	$\frac{-3\pi i}{32}$
	` /	32	` /	32	` /	32	` /	32