EXTRA QUESTIONS FOR TYBSC SEM V ATKT (PAPER III)

1	Eve	Every finite metric space is					
	(a)	not compact	(b)	compact			
	(c)	bounded	(d)	closed			
2	R w	R with respect to the usual metric is					
	(a)	compact	(b)	not compact			
	(c)	closed	(d)	bounded			
3	Let	X= R, d is the usual metric. Let A = $\{1/n : n \in \mathbb{N}\} \cup \{0\}$. Then					
	(a)	A is not compact subset of R	(b)	A is compact subset of R			
	(c)	A is compact and closed subset of R	(d)	A is compact and bounded subset of R			
4	Let	Let (X, d) be ametric space. Let A, B be subsets of X be a compact subsets of X. Then					
	(a)	only A ∩ B is compact	(b)	$A \cup B$ and $A \cap B$ both are compact			
	(c)	only A ∪ B is compact	(d)	A * B is compact			
5	Any compact subset of a metric space is						
	(a)	closed	(b)	closed and bounded			
	(c)	bounded	(d)	neither closed nor bounded			
6	A m	A metric space (X,d) is said to have Bolzano-Weierstrass property (BWP) if					
	(a)	every finite subset of X has a limit point.	(b)	every infinite subset of X has a limit point.			
	(c)	every bounded subset of X has a limit point.	(d)	every infinite and bounded subset of X has a limit point.			
7	A m	A metric space (X,d) is said to be sequentially compact if every sequence in X has a					
	(a)	convergent sequence	(b)	convergent subsequence			
	(c)	divergent subsequence	(d)	divergent sequence			
8	Every sequentially compact metric space is						
	(a)	not compact	(b)	compact			
	(c)	closed	(d)	complete			
9	Let	Let A and B be two subsets of a metric space X such that A is closed and B is compact, then					
	(a)	A + B is compact	(b)	A ∩ B is compact			
	(c)	A * B is compact	(d)	A * B and A + B both are compact			
10	Heir	Heine- Borel theorem states that					

	(a)	every open interval in R is compact	(b)	every closed and bounded interval in R is compact	
	(c)	every open and bounded interval in R is compact	(d)	every closed and unbounded interval in R is compact	
11	Let (X,d) be a metric space and A be a compact subset of X and B be closed subset				
	of X such that $A \cap B = \phi$, then				
	(a)	d(A,B) < 0	(b)	d(A,B) > 0	
	(c)	d(A,B) = 0	(d)	d(A,B) not equal to 0	