QUESTION BANK FOR SEMESTER V ATKT TYBSC MATHS PAPER III (TOPOLOGY OF METRIC SPACE) | | Choose correct alternative in each of the following | | | | | |----|----------------------------------------------------------------------------------------------------------------------|----------|----------------------------------|--|--| | 1 | Let $(X, / /)$ be a normed linear space and $x, y, z \in X$ if d is metric induced by the norm then | | | | | | | (a) $d(x+z,y+z) \ge d(x,y)$ | (b) | $d(x+z,y+z) \ge d(x,y) + d(y,z)$ | | | | | (c) $d(x+z, y+z) = d(x, y)$ | (d) | None of these. | | | | 2 | The usual distance on R is given as follow | /S. | | | | | | (a) $d(x,y) = x-y $ | | d(x,y) = x-y | | | | | (c) d(x,y) = x - 2y | \ / | None of these. | | | | 3 | Let $(X, /)$ be a normed linear space and : | | | | | | | (a) $ x-y \le x - y $ | | x-y = x - y | | | | | (c) $ x-y \ge x - y $ | (d) | None of these. | | | | 4 | Let (X, d) be a metric space and $x, y, z \in X$. | | | | | | | (a) $d(x,y) \le d(x,z) + d(z,y)$ | | $d(x,y) \ge d(x,z) + d(z,y)$ | | | | | (c) $d(x,y) = d(x,z) + d(z,y)$ | \ / | d(x,y) > d(x,z) + d(z,y) | | | | 5 | Let (X, d) be a metric space then which of th | e follow | ving is an induced metric. | | | | | (a) $d_1(x,y) = \sqrt{d(x,y)}$ | (b) | $d_1(x,y) = d^2(x,y)$ | | | | | (c) $d_1(x,y) = max\{1, d(x,y)\}$ | (d) | None of these. | | | | 6 | Let (X, d) be a metric space and $x, y \in X$. Let $d(x, y) = s > 0$. Then $B(x, r) \cap B(y, r) = \emptyset$ if | | | | | | | (a) $r \ge \frac{s}{2}$ | (b) | $0 < r \le \frac{s}{2}$ | | | | | (c) <i>r</i> ≥2 <i>s</i> | (d) | None of these. | | | | 7 | Let (X, d) be a discrete metric space and $x \in X$. Then which of the following open ball is not a | | | | | | | singleton set. | | | | | | | (a) $B(x, \frac{1}{2})$ | | $B(x,\frac{3}{4})$ | | | | | (c) $B(x, 1)$ | | B(x,r), r > 1 | | | | 8 | Let (X, d) be a metric space in which the only | | - | | | | | (a) d is discrete metric on X . | ` ′ | $d(x,y) \ge 1$, if $x \ne y$. | | | | | (c) X is a singleton set. | (d) | None of these. | | | | 9 | The set $U = \{(x, y) \in \mathbb{R}^2 / x^2 - y^2 \le 1\}$ with Euclidean metric is | | | | | | | (a) An Open set in \mathbb{R}^2 . | (b) | A Closed set in \mathbb{R}^2 . | | | | | (c) Both Open and closed set in \mathbb{R}^2 . | (d) | None of these. | | | | 10 | A rectangle of the form $(a, b) \times (c, d)$ is an | open se | et in | | | | | (a) R^2 with Euclidean metric. | (b) | R^2 with $///_2$ norm. | | | | | (c) R^2 with discrete metric. | (d) | All of the above. | | | | 11 | The set of rational numbers Q is | | | | | | | () | I | (1.) | | | | | |----|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------|--|--|--| | | (a) | An open set in R with usual metric. | (b) | A closed set in R with usual metric. | | | | | | (c) | Neither open nor closed in <i>R</i> with usual metric. | (d) | None of these. | | | | | | | | | | | | | | 12 | In a | In a metric space (X, d) | | | | | | | | (a) | An arbitrary intersection of open set is an open set. | (b) | An arbitrary intersection of open ball is an open ball. | | | | | | (c) | An intersection of finitely many open balls is an open ball. | (d) | None of these. | | | | | 13 | The | set $U = R \setminus Z$, subset of R with usual | metric | , is | | | | | | (a) | An open set in R . | (b) | A closed set in R. | | | | | | (c) | Neither open nor closed in R. | (d) | None of these. | | | | | 14 | Let | (X, d) be a metric space and $x \in X$, $0 < r$ | T. 2 > | hen | | | | | | (a) | $B(x,r) \subseteq B(x,s)$ and equality may occure. | (b) | $B(x,r) \subset B(x,s)$ | | | | | | (c) | $B(x,r) = B(x,s) \text{ if } r \ge 1.$ | (d) | None of these. | | | | | 15 | Con | sider the metric space (N, d) and (N, d) |) whe | ere d is usual distance in R and d_1 is the | | | | | | discr | rete metric in N .Then | | | | | | | | (a) | The two metric spaces do not have same open balls. | (b) | The open balls in two metric spaces are same. | | | | | | (c) | Every open ball in (N, d) is an open ball in (N, d_1) . | (d) | None of these. | | | | | 16 | | According to Housdorff property for any two distinct points $x, y \in X$ there exists $r > 0$ such that | | | | | | | | (a) | $B(x,r) \cup B(y,r) = \emptyset$ | (b) | $B(x,r) \cap B(y,r) \neq \emptyset$ | | | | | | (c) | $B(x,r) \cup B(y,r) \neq \emptyset$ | (d) | $B(x,r)\cap B(y,r)=\varnothing$ | | | | | 17 | Let | \overline{A} be any finite set in a metric space (X | (d) | | | | | | | (a) | An open set. | (b) | A closed set. | | | | | | (c) | Open as well as closed. | (d) | None of these. | | | | | 18 | Let (X, d) be a metric space and d_1 be the metric on X defined by $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ then | | | | | | | | | (a) | d and d_1 are equivalent metrics on X | (b) | d and d_1 are not equivalent metrics on X . | | | | | | (c) | Every open ball in (X, d) is an open ball in (X, d_1) . | (d) | None of these. | | | | | 19 | Evei | Every closed ball in a metric space (X, d) is | | | | | | | | (a) | A closed set. | (b) | An open set. | | | | | | (c) | Both open and closed. | (d) | None of these. | | | | | 20 | Very | y open ball in a metric space (X, d) is | | | | | | | | | | | | | | | | (a) | A closed set. | (b) | An open set. | |-----|-----------------------|-----|----------------| | (c) | Both open and closed. | (d) | None of these. | | (a) K is compact. (b) K is compact if K is closed. (c) K is compact if K is bounded. (d) K is compact if K is finite. (22) Which of the following subsets of R^3 is compact? (a) $\{(x,y,z) \in R^3 : x^2 + y^2 - z^2 = 1\}$ (b) $\{(x,y,z) \in R^3 : x^2 - y^2 - z^2 = 1\}$ (c) $\{(x,y,z) \in R^3 : x^2 + y^2 + z^2 = 1\}$ (d) None of these. (a) $[0,1] \cup [2,3]$ is compact. (b) $[0,1] \cup [2,3]$ is compact. (c) $[0,1] \cup \{x \in \mathbb{N} : x \geq 3\}$ is compact. (d) $[0,1] \cup [2,3]$ is compact. (e) $[0,1] \cup \{x \in \mathbb{N} : x \geq 3\}$ is compact. (d) $[0,1] \cup [2,3]$ is compact. (e) $[0,1] \cup \{x \in \mathbb{N} : x \geq 3\}$ is compact. (d) $[0,1] \cup [2,3]$ is compact. (e) $[0,1] \cup \{x \in \mathbb{N} : x \geq 3\}$ is compact. (e) $[0,1] \cup [2,3]$ a compact subset of $[0,1] \cup [2,3]$ is a compact subset of a metric space is compact. (e) $[0,1] \cup [2,3]$ is a compact subset of a metric space is compact. (e) $[0,1] \cup [2,3]$ is a compact subset of $[0$ | | | | | | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------|-----------------------------------------------------------------------|--| | (c) K is compact if K is bounded. (d) K is compact if K is finite. 22 Which of the following subsets of R^3 is compact? (a) $\{(x,y,z) \in R^3 : x^2 + y^2 - z^2 = 1\}$ (b) $\{(x,y,z) \in R^3 : x^2 - y^2 - z^2 = 1\}$ (c) $\{(x,y,z) \in R^3 : x^2 + y^2 + z^2 = 1\}$ (d) None of these. 23 In a metric space (R,d) , d is usual distance, (a) $[0,1] \cup [2,3]$ is compact. (b) $[0,1] \cup (2,3)$ is compact. (c) $[0,1] \cup \{x \in \mathbb{N} : x \geq 3\}$ is compact. (d) $[0,1] \cup [2,\infty)$ is compact. 24 Let A and B be compact subset of (R,d) , d is usual distance. Then the following set is not compact. (a) $A \times B$ in (R^2,d) , A being Euclidean (b) $A \cup B$ in B (provided $A \cap B \neq \emptyset$) 25 Which of the following statements is false? (a) A compact subset of a metric space is closed and bounded. (d) $A \cap B$ in is a compact. (b) $A \cap B$ in $A \cap B$ is a compact subset of a metric space is compact. (c) $A \cap B$ in $A \cap B$ is a compact subset of in $A \cap B$ is a compact subset of compact. (d) None of these. 28 The set $A \cap B \cap B$ in $A \cap B \cap B$ is a compact. (d) None of these. | 21 | | | | | | | 22 Which of the following subsets of R^3 is compact? (a) $\{(x,y,z) \in R^3 : x^2 + y^2 - z^2 = 1\}$ (b) $\{(x,y,z) \in R^3 : x^2 - y^2 - z^2 = 1\}$ (c) $\{(x,y,z) \in R^3 : x^2 + y^2 + z^2 = 1\}$ (d) None of these. 23 In a metric space (R,d) , d is usual distance, (a) $[0,1] \cup [2,3]$ is compact. (b) $[0,1] \cup (2,3)$ is compact. (c) $[0,1] \cup \{x \in \mathbb{N} : x \geq 3\}$ is compact. (d) $[0,1] \cup (2,3)$ is compact. 24 Let A and B be compact subset of (R,d) , d is usual distance. Then the following set is not compact. (a) $A \times B$ in (R^2,d) , A being Euclidean (b) $A \cup B$ in A (provided $A \cap B \neq \emptyset$) 25 Which of the following statements is false? (a) A compact subset of a metric space is closed and bounded. (b) $A \cup B$ in A (provided $A \cap B \neq \emptyset$) 26 Let (X,d) be a metric space and (x_n) be a sequence in X such that $x_n \to x_0$ as $n \to \infty$. Then (a) $\{x_n : n \in N\} \cup \{x_0\}$ is a compact subset of X . (b) $\{x_n : n \in N\} \cup \{x_0\}$ is a compact subset of X . (c) $\{x_n : n \in N\} \cup \{x_0\}$ is a compact subset of X . None of these. 27 Let A be a compact subset of R . Then (a) A may not be compact. (b) A^0 may not be compact. (c) ∂A may not be compact. (d) None of these. | | (a) | K is compact. | (b) | K is compact if K is closed. | | | (a) $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 = 1\}$ (b) $\{(x,y,z) \in \mathbb{R}^3 : x^2 - y^2 - z^2 = 1\}$ (c) $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ (d) None of these. 23 In a metric space (R,d) , d is usual distance, (a) $[0,1] \cup [2,3]$ is compact. (b) $[0,1] \cup [2,3)$ is compact. (c) $[0,1] \cup \{x \in \mathbb{N} : x \ge 3\}$ is compact. (d) $[0,1] \cup [2,\infty)$ is compact. 24 Let A and B be compact subset of (R,d) , d is usual distance. Then the following set is not compact. (a) $A \times B$ in (R^2,d) , A being Euclidean (b) $A \cup B$ in R (provided $A \cap B \ne \infty$) 25 Which of the following statements is false? (a) A compact subset of a metric space is closed and bounded. (b) A closed and bounded subset of a metric space is compact. (b) A closed subset of a compact set in a metric space is compact. 26 Let (X,d) be a metric space and (x_n) be a sequence in X such that $x_n \to x_0$ as $n \to \infty$. Then (a) A compact subset of may not be compact. (b) A may not be compact. (c) A may not be compact. (d) None of these. 28 The set A compact subset of A is usual distance, is | | ` ' | | ` / | - | | | (c) {(x,y,z) ∈ R³ : x² + y² + z² = 1} (d) None of these. 23 In a metric space (R, d), d is usual distance, (a) [0,1] ∪ [2,3] is compact. (b) [0,1] ∪ (2,3) is compact. (c) [0,1] ∪ {x∈N : x≥3} is compact. (d) [0,1] ∪ [2,∞) is compact. 24 Let A and B be compact subset of (R, d), d is usual distance. Then the following set is not compact. (a) A×B in (R², d), d being Euclidean (b) A∪B in R (c) A∩B in R, (provided A∩B≠∞) (d) ANB in R (provided ANB≠∞) 25 Which of the following statements is false? (a) A compact subset of a metric space is closed and bounded. (b) A closed and bounded subset of a metric space is compact. (c) A finite subset of a metric space is compact. (d) A closed subset of a compact set in a metric space is compact. 26 Let (X, d) be a metric space and (xn) be a sequence in X such that xn → x0 as n→∞. Then (a) {xn : n∈N} ∪ {x0} is a compact subset of X. (b) {xn : n∈N} ∪ {x0} is a compact subset of X. (c) {xn : n∈N} ∪ {x0} is a compact subset of X. (d) Sa is a compact subset of X. (e) {xn : n∈N} ∪ {x0} is a compact subset of X. (f) A may not be compact. (g) A may not be compact. (h) None of these. | 22 | Whi | ch of the following subsets of R^3 is co | mpact | | | | 23 In a metric space (R, d) , d is usual distance, (a) $[0,1] \cup [2,3]$ is compact. (b) $[0,1] \cup [2,\infty)$ is compact. (c) $[0,1] \cup \{x \in N : x \ge 3\}$ is compact. (d) $[0,1] \cup [2,\infty)$ is compact. 24 Let A and B be compact subset of (R, d) , d is usual distance. Then the following set is not compact. (a) $A \times B$ in (R^2, d) , d being Euclidean (b) $A \cup B$ in R (c) $A \cap B$ in R , (provided $A \cap B \ne \emptyset$) (d) $A \setminus B$ in R (provided $A \setminus B \ne \emptyset$) 25 Which of the following statements is false? (a) A compact subset of a metric space is closed and bounded. (b) A closed and bounded subset of a metric space is compact. (c) A finite subset of a metric space is compact. (d) A closed subset of a compact set in a metric space is compact. 26 Let (X, d) be a metric space and (x_n) be a sequence in X such that $x_n \to x_0$ as $n \to \infty$. Then (a) $\{x_n : n \in N\}$ is a compact subset of X . (b) $\{x_n : n \in N\} \cup \{x_0\}$ is a compact subset of X . None of these. 27 Let A be a compact subset of R . Then (a) \overline{A} may not be compact. (b) A^0 may not be compact. (c) ∂A may not be compact. (d) None of these. | | (a) | | (b) | $\{(x, y, z) \in R^3 : x^2 - y^2 - z^2 = 1\}$ | | | (a) [0,1] U[2,3] is compact. (b) [0,1] U(2,3) is compact. (c) [0,1] U {x∈N : x≥3} is compact. (d) [0,1] U[2,∞) is compact. 24 Let A and B be compact subset of (R,d), d is usual distance. Then the following set is not compact. (a) A×B in (R²,d), d being Euclidean (b) A∪B in R (c) A∩B in R, (provided A∩B≠∞) (d) A×B in R (provided A\B≠∞) 25 Which of the following statements is false? (a) A compact subset of a metric space is closed and bounded. (b) A closed and bounded subset of a metric space is compact. (c) A finite subset of a metric space is compact. (d) A closed subset of a compact set in a metric space is compact. 26 Let (X,d) be a metric space and (xn) be a sequence in X such that xn → x0 as n→∞. Then (a) {xn : n∈N} is a compact subset of X only if (xn) is a sequence of distinct points. (b) {xn : n∈N} U {x0} is a compact subset of X only if (xn) is a sequence of distinct points. 27 Let A be a compact subset of R. Then (a) A may not be compact. (b) A may not be compact. (c) ∂A may not be compact. (d) None of these. | | (c) | $\left\{ (x, y, z) \in R^3 : x^2 + y^2 + z^2 = 1 \right\}$ | (d) | None of these. | | | (c) [0,1] ∪ {x∈N : x≥3} is compact. (d) [0,1] ∪ [2,∞) is compact. 24 Let A and B be compact subset of (R,d), d is usual distance. Then the following set is not compact. (a) A×B in (R²,d), d being Euclidean (b) A∪B in R (c) A∩B in R, (provided A∩B≠∞) (d) A√B in R (provided A√B≠∞) 25 Which of the following statements is false? (a) A compact subset of a metric space is closed and bounded. (b) A closed and bounded subset of a metric space is compact. (c) A finite subset of a metric space is compact. (d) A closed subset of a compact set in a metric space is compact. 26 Let (X,d) be a metric space and (xn) be a sequence in X such that xn → x0 as n→∞. Then (a) {xn:n∈N} is a compact subset of X. (b) {xn:n∈N} ∪ {x0} is a compact subset of X. (c) {xn:n∈N} ∪ {x0} is a compact subset of X. (d) None of these. 27 Let A be a compact subset of R. Then (a) A may not be compact. (d) None of these. 28 The set {n+1/n:n∈N} in (R,d), d is usual distance, is | 23 | In a | metric space (R, d) , d is usual distance, | | | | | Let A and B be compact subset of (R, d), d is usual distance. Then the following set is not compact. (a) A×B in (R², d), d being Euclidean (b) A∪B in R (c) A∩B in R, (provided A∩B≠∅) (d) A\B in R (provided A\B≠∅) 25 Which of the following statements is false? (a) A compact subset of a metric space is closed and bounded. (b) A closed and bounded subset of a metric space is compact. (c) A finite subset of a metric space is compact. (d) A closed subset of a compact set in a metric space is compact. 26 Let (X, d) be a metric space and (x_n) be a sequence in X such that x_n → x₀ as n→∞. Then (a) {x_n : n∈N} is a compact subset of X. (b) {x_n : n∈N} ∪ {x₀} is a compact subset of X. (c) {x_n : n∈N} ∪ {x₀} is a compact subset of X. (d) None of these. 27 Let A be a compact subset of R. Then (a) A may not be compact. (b) A⁰ may not be compact. (c) ∂A may not be compact. (d) None of these. | | (a) | [0, 1] U[2, 3] is compact. | (b) | $[0,1] \cup (2,3)$ is compact. | | | compact. (a) $A \times B$ in (R^2, d) , d being Euclidean (b) $A \cup B$ in R (c) $A \cap B$ in R , (provided $A \cap B \neq \emptyset$) (d) $A \setminus B$ in R (provided $A \setminus B \neq \emptyset$) 25 Which of the following statements is false? (a) A compact subset of a metric space is closed and bounded. (b) A closed and bounded subset of a metric space is compact. (c) A finite subset of a metric space is compact. (d) A closed subset of a compact set in a metric space is compact. 26 Let (X, d) be a metric space and (x_n) be a sequence in X such that $x_n \to x_0$ as $n \to \infty$. Then (a) $\{x_n : n \in N\}$ is a compact subset of X . (b) $\{x_n : n \in N\} \cup \{x_0\}$ is a compact subset of X . None of these. 27 Let X be a compact subset of X . Then (a) X may not be compact. (b) X may not be compact. (c) X may not be compact. (d) None of these. | | (c) | $[0,1] \cup \{x \in N : x \ge 3\}$ is compact. | (d) | $[0,1] \cup [2,\infty)$ is compact. | | | (a) A×B in (R², d), d being Euclidean (b) A∪B in R (c) A∩B in R, (provided A∩B≠∅) (d) A×B in R (provided A∧B≠∅) 25 Which of the following statements is false? (a) A compact subset of a metric space is closed and bounded. (b) A closed and bounded subset of a metric space is compact. (c) A finite subset of a metric space is compact. (d) A closed subset of a compact set in a metric space is compact. 26 Let (X, d) be a metric space and (x_n) be a sequence in X such that x_n → x₀ as n→∞. Then (a) {x_n : n∈N} is a compact subset of X. (b) {x_n : n∈N} ∪ {x₀} is a compact subset of X. (c) {x_n : n∈N} ∪ {x₀} is a compact subset of X. (d) None of these. 27 Let A be a compact subset of R. Then (a) A may not be compact. (b) A⁰ may not be compact. (c) ∂A may not be compact. (d) None of these. | 24 | Let . | A and B be compact subset of (R, d) | , d is u | sual distance .Then the following set is not | | | (c) A∩B in R, (provided A∩B≠∅) (d) ANB in R (provided ANB≠∅) Which of the following statements is false? (a) A compact subset of a metric space is closed and bounded. (b) A closed and bounded subset of a metric space is compact. (c) A finite subset of a metric space is compact. (d) A closed and bounded subset of a compact set in a metric space is compact. 26 Let (X, d) be a metric space and (x_n) be a sequence in X such that x_n → x₀ as n→∞. Then (a) {x_n : n∈N} is a compact subset of X. (b) {x_n : n∈N} ∪ {x₀} is a compact subset of X. (c) {x_n : n∈N} ∪ {x₀} is a compact subset of X. (d) None of these. 27 Let A be a compact subset of R. Then (a) A may not be compact. (b) A⁰ may not be compact. (c) ∂A may not be compact. (d) None of these. | | comp | • | • | | | | Which of the following statements is false? (a) A compact subset of a metric space is closed and bounded. (b) A closed and bounded subset of a metric space is compact. (c) A finite subset of a metric space is compact. 26 Let (X, d) be a metric space and (x_n) be a sequence in X such that x_n → x₀ as n→∞. Then (a) {x_n : n∈N} is a compact subset of X. (b) {x_n : n∈N} ∪ {x₀} is a compact subset of X. (c) {x_n : n∈N} ∪ {x₀} is a compact subset of X. (d) None of these. 27 Let A be a compact subset of R. Then (a) A may not be compact. (b) A⁰ may not be compact. (c) ∂A may not be compact. (d) None of these. | | (a) | | (b) | $A \cup B$ in R | | | (a) A compact subset of a metric space is closed and bounded. (b) A closed and bounded subset of a metric space is compact. (c) A finite subset of a metric space is compact. (d) A closed subset of a compact set in a metric space is compact. 26 Let (X, d) be a metric space and (x _n) be a sequence in X such that x _n → x ₀ as n→∞. Then (a) {x _n : n∈N} is a compact subset of X. (b) {x _n : n∈N} ∪ {x ₀ } is a compact subset of X. (c) {x _n : n∈N} ∪ {x ₀ } is a compact subset of X. (d) None of these. 27 Let A be a compact subset of R. Then (a) A may not be compact. (b) A ⁰ may not be compact. (c) ∂A may not be compact. (d) None of these. | | (c) | $A \cap B$ in R , (provided $A \cap B \neq \emptyset$) | (d) | $A \backslash B$ in R (provided $A \backslash B \neq \varnothing$) | | | is closed and bounded. (b) space is compact. (c) A finite subset of a metric space is compact. (d) A closed subset of a compact set in a metric space is compact. 26 Let (X, d) be a metric space and (x _n) be a sequence in X such that x _n → x ₀ as n→∞. Then (a) {x _n : n∈N} is a compact subset of X. (b) {x _n : n∈N} ∪ {x ₀ } is a compact subset of X. (c) {x _n : n∈N} ∪ {x ₀ } is a compact subset of X only if (x _n) is a sequence of distinct points. 27 Let A be a compact subset of R. Then (a) A may not be compact. (b) A may not be compact. (c) ∂A may not be compact. (d) None of these. 28 The set {n+1/n : n∈N} in (R, d), d is usual distance, is | 25 | Which of the following statements is false? | | | | | | (c) A finite subset of a metric space is compact. (d) A closed subset of a compact set in a metric space is compact. 26 Let (X, d) be a metric space and (x_n) be a sequence in X such that $x_n \to x_0$ as $n \to \infty$. Then (a) $\{x_n : n \in N\}$ is a compact subset of X . (b) $\{x_n : n \in N\} \cup \{x_0\}$ is a compact subset of X . None of these. 27 Let X be a compact subset of X . Then (a) X may not be compact. (b) X none of these. 28 The set X in X in X in X is usual distance, is | | (a) | A compact subset of a metric space | | A closed and bounded subset of a metric | | | compact. (d) Metosed statistic of a compact set in a metric space is compact. 26 Let (X, d) be a metric space and (x _n) be a sequence in X such that x _n → x ₀ as n→∞. Then (a) {x _n : n∈N} is a compact subset of X. (b) {x _n : n∈N} ∪ {x ₀ } is a compact subset of X. (c) {x _n : n∈N} ∪ {x ₀ } is a compact subset of X. None of these. 27 Let A be a compact subset of R. Then (a) A may not be compact. (b) A ⁰ may not be compact. (c) ∂A may not be compact. (d) None of these. 28 The set {n+1/n : n∈N} in (R, d) , d is usual distance, is | | | is closed and bounded. | (b) | space is compact. | | | compact. (d) Metosed statistic of a compact set in a metric space is compact. 26 Let (X, d) be a metric space and (x _n) be a sequence in X such that x _n → x ₀ as n→∞. Then (a) {x _n : n∈N} is a compact subset of X. (b) {x _n : n∈N} ∪ {x ₀ } is a compact subset of X. (c) {x _n : n∈N} ∪ {x ₀ } is a compact subset of X. None of these. 27 Let A be a compact subset of R. Then (a) A may not be compact. (b) A ⁰ may not be compact. (c) ∂A may not be compact. (d) None of these. 28 The set {n+1/n : n∈N} in (R, d) , d is usual distance, is | | (c) | A finite subset of a metric space is | | | | | Let (X, d) be a metric space and (x_n) be a sequence in X such that $x_n \to x_0$ as $n \to \infty$. Then (a) $\{x_n : n \in N\}$ is a compact subset of X . (b) $\{x_n : n \in N\} \cup \{x_0\}$ is a compact subset of X . None of these. 27 Let X be a compact subset of X is a compact subset of X and X is a compact subset of X only if X is a compact subset of X only if X is a compact subset of X only if X is a compact subset of X only if X is a compact subset of X only if X is a compact subset of X only if X is a compact subset of X only if X is a compact subset of X in X is a compact subset of X in | | (c) | _ | (d) | - | | | (a) {x_n : n∈N} is a compact subset of X. (b) {x_n : n∈N} ∪ {x₀} is a compact subset of X. (c) {x_n : n∈N} ∪ {x₀} is a compact subset of X only if (x_n) is a sequence of distinct points. 27 Let A be a compact subset of R. Then (a) A may not be compact. (b) A⁰ may not be compact. (c) ∂A may not be compact. (d) None of these. 28 The set {n + 1/n : n∈N} in (R, d) , d is usual distance, is | | | - | | - | | | X . (b) X . (c) $\{x_n : n \in N\} \cup \{x_0\}$ is a compact subset of X only if (x_n) is a sequence of distinct points. (d) X . None of these. (e) X be a compact subset of X . Then (a) X may not be compact. (b) X may not be compact. (c) X may not be compact. (d) None of these. (e) X The set X may not be compact. (d) None of these. | 26 | Let | | uence | | | | (c) $\{x_n : n \in N\} \cup \{x_0\}$ is a compact subset of X only if (x_n) is a sequence of distinct points. 27 Let A be a compact subset of R . Then (a) \overline{A} may not be compact. (b) A^0 may not be compact. (c) ∂A may not be compact. (d) None of these. 28 The set $\{n + \frac{1}{n} : n \in N\}$ in (R, d) , d is usual distance, is | | (a) | _ | (b) | $\{x_n : n \in N\} \cup \{x_0\}$ is a compact subset of | | | subset of X only if (x_n) is a sequence of distinct points. 27 Let A be a compact subset of R . Then (a) \overline{A} may not be compact. (b) A^0 may not be compact. (c) ∂A may not be compact. (d) None of these. 28 The set $\{n + \frac{1}{n} : n \in N\}$ in (R, d) , d is usual distance, is | | | · | (0) | · | | | sequence of distinct points. 27 Let A be a compact subset of R . Then (a) \overline{A} may not be compact. (b) A^0 may not be compact. (c) ∂A may not be compact. (d) None of these. 28 The set $\{n + \frac{1}{n} : n \in N\}$ in (R, d) , d is usual distance, is | | (c) | _ | | None of these. | | | 27 Let A be a compact subset of R . Then (a) \overline{A} may not be compact. (b) A^0 may not be compact. (c) ∂A may not be compact. (d) None of these. 28 The set $\{n + \frac{1}{n} : n \in N\}$ in (R, d) , d is usual distance, is | | | | (d) | | | | (a) \overline{A} may not be compact. (b) A^0 may not be compact. (c) ∂A may not be compact. (d) None of these.
28 The set $\{n + \frac{1}{n} : n \in N\}$ in (R, d) , d is usual distance, is | 27 | Τ., | - | | | | | (c) ∂A may not be compact. (d) None of these.
28 The set $\{n + \frac{1}{n} : n \in N\}$ in (R, d) , d is usual distance, is | 21 | | | | | | | 28 The set $\{n + \frac{1}{n} : n \in N\}$ in (R, d) , d is usual distance, is | | ` ′ | - | ` ' | | | | " | | ` ' | 7 | ` ′ | | | | 1 12 1 2 | 28 | | ,, | ıl distar | | | | | | (a) | Compact | (b) | Not compact. | | | (c) Connected. (d) None of these. | | ` ′ | | () | | | | The set $\{(x,y) \in \mathbb{R}^2 : x + y \le 1\}$ as a subset of (\mathbb{R}^2, d) , d being Euclidean distance, is | 29 | The set $\{(x,y) \in \mathbb{R}^2 : x + y \le 1\}$ as a subset of (\mathbb{R}^2, d) , d being Euclidean distance, is | | | | | | | (a) | Compact | (b) | Not compact. | |----|--------|--------------------------------------|--------|---| | | (c) | Not Connected. | (d) | None of these. | | 30 | If A | and B are disjoint non-empty subsets | of a m | netric space (X, d) such that A is closed and | | | B is | compact then | | | | | (a) | d(A,B)=0 | (b) | d(A,B) < 0 | | | (c) | d(A,B) = 1 | (d) | d(A,B) > 0 | | 31 | Let (X,d) be a metric space. A Sequence $\{x_n\}$ in X is said to converge to $x \in X$ if for expression $\{x_n\}$ in X is said to converge to $\{x_n\}$ in X is said to converge to $\{x_n\}$ i | | | X is said to converge to $X \in X$ if for every | | |---|---|---|---------------------|---|--| | | € > (| $\epsilon > 0$, there exists $n_0 \epsilon N$ such that | | | | | | (a) | $d(x_n, x) < \epsilon$ for all $n \ge n_0$ | (b) | $d(x_n, x) \le \epsilon$ for all $n \ge n_0$ | | | | (c) | $d(x_n, x) = \epsilon$ for all $n \ge n_0$ | (d) | $d(x_n, x) \ge \epsilon$ for all $n \ge n_0$ | | | 32 | Let | (X,d) be a metric space. A Sequence {x | _n } in Σ | X is converge to $x \in X$ if and only if the | | | | sequ | $in ence (d(x_n, x))$ | | | | | | (a) | converges to 0 in R | (b) | converges to 0 in X | | | | (c) | diverges to 0 in R | (d) | converges and diverges to 0 in R | | | 33 | If X | is normed linear space then (x_n) is bound | nded it | | | | | (a) | $ \mathbf{x}_{\mathbf{n}} \leq \mathbf{M}$ for all $\mathbf{n} \in \mathbf{N}$ | (b) | $ x_n \le M \text{ for all } n \in N$ | | | | (c) | $ \mathbf{x}_{\mathbf{n}} = \mathbf{M}$ for all $\mathbf{n} \in \mathbf{N}$ | (d) | $ x_n \ge M \text{ for all } n \in N$ | | | 34 | Eve | ry convergent sequence in a metric space | e is | | | | | (a) | bounded | (b) | closed | | | | (c) | Cauchy | (d) | closed and bounded | | | 35 Every Cauchy Sequence in a metric space is | | | | | | | | (a) | bounded | | closed | | | | | bounded | (b) | Closed | | | | (c) | convergent | (d) | convergent and bounded | | | 36 | Let (X,d) be a metric space and A be a subset of X. p ϵ closure of A if and only if there exists | | | | | | | a sec | quence of points of A | | | | | | (a) | converging to p | (b) | converging to 0 | | | | (c) | converging to p and 0 both | (d) | does not converge to p | | | 37 | A no | on empty set A is said to be countable if | there | exists | | | | (a) | a injective function $f: A \rightarrow N$ | (b) | a surjective function $f: A \rightarrow N$ | | | | (c) | a bijective function $f: A \rightarrow N$ | (d) | a injective and surjective both function | | | | | | (u) | $f: A \rightarrow N$ | | | 38 | A m | etric space (X,d) is said to be separable | if X | has a | | | | (a) | countable dense subset | (b) | convergent sequence | | | | (c) | uncountable dense subset | (d) | dense subset of X | | | 39 | If A | and B are dense subsets of a metric spa | ce (X, | , d) and one of A, B is open then | | | | _ | 1 | | | | | | |--|---|--|--------|--|--|--|--| | | (a) | A∩ B is dense in X | (b) | A∪ B is dense in X | | | | | | (c) | A + B is dense in X | (d) | A * B is dense in X | | | | | 40 | A metric space (X,d) is said to be complete | | if eve | ry | | | | | | (a) | Cauchy sequence in X converges to | (b) | a bounded sequence in X converges to a | | | | | | (a) | a point in X. | (0) | point in X. | | | | | | (c) | Closed and bounded sequence in X | (d) | subsequence in X converges to a point in | | | | | | (0) | converges to a point in X. | (u) | X. | | | | | | | | | | | | | | 41 | Evei | ry finite metric space is | | | | | | | | (a) | complete | (b) | bounded | | | | | | (c) | closed | (d) | complete and closed | | | | | 42 | A C | omplete subspace of a metric space is | | | | | | | | (a) | closed | (b) | bounded | | | | | | (c) | closed and bounded | (d) | compact | | | | | 43 | Bolz | zano Weierstrass Theorem states that | | | | | | | | (a) | every bounded real sequence has a | (b) | every bounded real sequence has not a | | | | | | (a) | convergent subsequence | (0) | convergent subsequence | | | | | | (c) | every bounded real sequence has a | (d) | every bounded real sequence and Cauchy | | | | | | | Cauchy sequence | | sequence has a convergent subsequence | | | | | Let $f:[a,b] \rightarrow R$ be a continuous real valued function. Suppose $f(a)$ a | | | | | | | | | | sign | gn, then there exists $p \in [a,b]$ such that $f(p) = 0$. This statement is | | | | | | | | (a) | Intermediate Value Theorem | (b) | Cauchy theorem | | | | | | (c) | Cantor's theorem | (d) | Lagrange's theorem | | | | | 45 | Density theorem states that | | | | | | | | | | Let x and y be any two distinct real | | Let x and y be any two distinct real | | | | | | (a) | numbers with $x < y$, then there exists | (b) | numbers with $x < y$, then there exists a | | | | | | | a rational number r such that | (0) | rational number r such that | | | | | | | x < r < y | | $x \le r < y$ | | | | | | | Let x and y be any two distinct real | | Let x and y be any two distinct real | | | | | | (c) | numbers with $x < y$, then there exists | (d) | numbers with $x < y$, then there exists a | | | | | | | a rational number r such that | | rational number r such that $r < x < y$ | | | | | 4.5 | - | x < r ≤ y | | , | | | | | 46 | Can | tor Intersection theorem states that | | T . (37 D) | | | | | | | Let (X,d) be a complete metric | (b) | Let (X,d) be a complete metric space. Let | | | | | | (a) | space. Let $\{F_n\}$, $n \in N$ be a sequence | | $\{F_n\}$, $n \in N$ be a sequence of non empty | | | | | | | of non empty closed subsets of X | | closed subsets of X such that | | | | | | | such that | | $i > F_{n+1} \subseteq F_n$ for all $n \in N$ | | | | | | $i > F_{n+1} \subseteq F_n$ for all $n \in N$
$ii > \cap Fn$, $(n \in N)$ consists of exactly one point. | | ii> \cap Fn, (n \in N) consists of at least one point. | |-----|--|-----|---| | (c) | Let (X,d) be a complete metric space. Let $\{F_n\}$, $n \in N$ be a sequence of non empty closed subsets of X such that $i > F_{n+1} \subseteq F_n$ for all $n \in N$ $ii > \cap Fn$, $(n \in N)$ consists of minimum one point. | (d) | Let (X,d) be a complete metric space. Let $\{F_n\}$, $n \in N$ be a sequence of non empty closed subsets of X such that $i > F_{n+1} \subseteq F_n$ for all $n \in N$ $ii > \cap Fn$, $(n \in N)$ consists more than point. |