Quotient Space and Orthogonal Transformations,Isometries, Cayley-Hamilton Theorem and its application

Q 1) Let $V=\mathbb{R}^{3}, W_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}+x_{2}+x_{3}=0\right\}$ and $W_{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in\right.$ $\left.\mathbb{R}^{3}: x_{1}-x_{2}+x_{3}=0\right\}$ are subspaces of V. then
(a) $\operatorname{dim} V / W_{1}=\operatorname{dim} V / W_{2}=2, \operatorname{dim} W_{2} / W_{1} \cap W_{2}=1$
(b) $\operatorname{dim} V / W_{1}=\operatorname{dim} V / W_{2}=1, \operatorname{dim} W_{2} / W_{1} \cap W_{2}=1$
(c) $\operatorname{dim} V / W_{1}=\operatorname{dim} V / W_{2}=1, \operatorname{dim} W_{2} / W_{1} \cap W_{2}=2$
(d) None of the above.

Q 2) Let $V=M_{2}(\mathbb{R}), W_{1}=$ Space of 2×2 real symmetric matrices, $W_{2}=$ Space of 2×2 real skew symmetric matrices.
(a) $\operatorname{dim} V / W_{1}=1, \operatorname{dim} V / W_{2}=1$
(b) $\operatorname{dim} V / W_{1}=2, \operatorname{dim} V / W_{2}=2$
(c) $\operatorname{dim} V / W_{1}=1, \operatorname{dim} V / W_{2}=3$
(d) None of the above.

Q 3) Let $V=P_{2}[x]$, the space of polynomial of degree ≤ 2 over \mathbb{R} along with zero polynomial and $W=\{f \in V: f(0)=0\}$. Then
(a) $\left\{\overline{1}, \overline{x+1}, \overline{(x+1)^{2}}\right\}$ is the basis of the quotient space V / W.
(b) $\left\{\overline{x+1}, \overline{x^{2}+1}\right\}$ is the basis of the quotient space V / W
(c) $\{\overline{x+1}\}$ is the basis of the quotient space V / W
(d) None of the above.

Q 4) Let V be a real vector space and $T: \mathbb{R}^{6} \rightarrow V$ be a linear transformation such that $S=\left\{T e_{2}, T e_{4}, T e_{6}\right\}$ spans V. Then, which of the following is true ?
(a) S is a basis of V
(b) $\left\{e_{1}+\operatorname{Ker} T, e_{3}+\operatorname{Ker} T, e_{5}+\operatorname{Ker} T\right\}$ is a basis of $\mathbb{R}^{6} / \operatorname{Ker} T$
(c) $\operatorname{dimV} / \operatorname{ImT} \geq 3$
(d) $\operatorname{dim} \mathbb{R}^{6} / \operatorname{Ker} T \leq 3$

Q 5) Consider $W=\left\{(x, y, z) \in \mathbb{R}^{3}: 2 x+2 y+z=0,3 x+3 y-2 z=0, x+y-3 z=0\right\}$.Then $\operatorname{dim} \mathbb{R}^{3} / W$ is
(a) 1
(b) 2
(c) 3
(d) 0

Q 6) Consider the linear transformation $T: P_{2}[\mathbb{R}] \rightarrow M_{2}(\mathbb{R})$ defined by $T(f)=\left(\begin{array}{cc}f(0)-f(2) & 0 \\ 0 & f(1)\end{array}\right)$ where $P_{2}[\mathbb{R}]=$ space of polynomials of degree ≤ 2 along with 0 polynomial.Then
(a) $\operatorname{ker} T=0$ and $\operatorname{dim}\left(M_{2}(\mathbb{R}) / \operatorname{ImT} T\right)=3$
(b) $\operatorname{dim}\left(P_{2}[\mathbb{R}] / \operatorname{Ker} T\right)=1$
(c) T is one-one and onto.
(d) $\operatorname{dim}\left(P_{2}[\mathbb{R}] / \operatorname{Ker} T\right)=2$

Q 7) Let $V=M_{2}(\mathbb{R})$ and $W=\left\{A \in M_{2}(\mathbb{R}): A\left(\begin{array}{ll}0 & 2 \\ 3 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 2 \\ 3 & 1\end{array}\right) A\right\}$. Then
(a) $\operatorname{dim} V / W=0$
(b) $\operatorname{dim} V / W=1$
(c) $\operatorname{dim} V / W=2$
(d) $\operatorname{dim} V / W=3$

Q 8) Let $V=\mathbb{R}^{4}$ and $W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=x_{2}\right.$ and $\left.x_{3}=x_{4}\right\}$ a subspace of V . Then
(a) $\{\overline{(1,1,0,0)}, \overline{(0,1,0,1)}\}$ is the basis of V / W.
(b) $\{\overline{(1,0,1,0)}, \overline{(0,-1,0,-1)}\}$ is the basis of V / W
(c) $\{\overline{(1,0,1,0)}, \overline{(0,1,0,1)}\}$ is the basis of V / W
(d) None of the above.

Q 9) Let $V=M_{2}(\mathbb{R})$.Consider the subspaces $W_{1}=\left\{\left(\begin{array}{cc}a & -a \\ c & d\end{array}\right): a, b, c, d \in \mathbb{R}\right\}$ and $W_{2}=$ $\left\{\left(\begin{array}{cc}a & b \\ -a & d\end{array}\right): a, b, d \in \mathbb{R}\right\}$.Then
(a) $\operatorname{dim} V / W_{1}=\operatorname{dim} V / W_{2}=2, \operatorname{dim} W_{2} / W_{1} \cap W_{2}=1$
(b) $\operatorname{dim} V / W_{1}=\operatorname{dim} V / W_{2}=1, \operatorname{dim} W_{2} / W_{1} \cap W_{2}=1$
(c) $\operatorname{dim} V / W_{1}=\operatorname{dim} V / W_{2}=1, \operatorname{dim} W_{2} / W_{1} \cap W_{2}=2$
(d) None of the above.

Q 10) Let $V=M_{2}(\mathbb{R})$ and $W=\left\{A \in M_{2}(\mathbb{R}): \operatorname{Tr}(A)=0\right\}$ a subspace of V . Then
(a) $\left\{\overline{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)}, \overline{\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)}\right\}$ is the basis of V / W.
(b) $\left\{\overline{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)}\right\}$ is the basis of V / W
(c) $\left\{\overline{\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)}\right\}$ is the basis of V / W
(d) None of the above.

Q 11) Let $V=P_{n}[x]$, the space of polynomials of degree $\leq \mathrm{n}$ over \mathbb{R} along with zero polynomial and D denote the linear transformation $D: V \rightarrow P_{n-1}[x]$ defined by $D(f)=\frac{d f}{d x}$. If $W=\operatorname{ker} D$, then
(a) $\operatorname{dim} V / W=n-1$.
(b) $\operatorname{dim} V / W=1$
(c) $\operatorname{dim} V / W=n$
(d) None of these.

Q 12) Let A be a 5×7 matrix over \mathbb{R}. Suppose rank $A=3$.
A linear transformation $T: \mathbb{R}^{7} \rightarrow \mathbb{R}^{5}$ is defined by $T(X)=A X$, where X is a column vector in \mathbb{R}^{7}, and $W=k e r T, U=\operatorname{Img} T$, then
(a) $\operatorname{dim} \mathbb{R}^{7} / W=3, \operatorname{dim} \mathbb{R}^{5} / U=2$.
(b) $\operatorname{dim} \mathbb{R}^{7} / W=2, \operatorname{dim} \mathbb{R}^{5} / U=2$.
(c) $\operatorname{dim} \mathbb{R}^{7} / W=2, \operatorname{dim} \mathbb{R}^{5} / U=1$.
(d) None of the above.

Q 13) Let $V=M_{2}(\mathbb{R})$ and $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. A linear transformation $T: V \rightarrow V$ is defined by $T(B)=A B-B$. Then
(a) T is a linear isomorphism.
(b) $\operatorname{dim} V / \operatorname{ker} T=1$.
(c) $\operatorname{dimV} / \operatorname{ker} T=2$.
(d) None of these.

Q 14) Let U, W be vector spaces over \mathbb{R} with bases $\left\{u_{1}, u_{2}, \ldots ., u_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ respectively. Let $V=U \oplus V$ and linear transformation $P_{U}: V \rightarrow U$ be defined by $P_{U}(u+v)=u$, where $u \in U$ and $w \in W$. Then
(a) $\operatorname{dimV} / \operatorname{ker} P_{U}=n$.
(b) $\operatorname{dimV} / \operatorname{ker} P_{U}=m$.
(c) $\operatorname{dimV} / \operatorname{ker} P_{U}=m-n$.
(d) None of these.

Q 15) Let $V=\mathbb{R}^{2}, W=\left\{(x, y) \in \mathbb{R}^{2}: y=x\right\}$. Then
(a) $\{\overline{(1,1)}\}$ is a bases of V / W.
(b) $\{\overline{(1,0)}\}$ is a bases of V / W.
(c) $\{\overline{(1,1)}, \overline{(1,-1)}\}$ is a bases of V / W.
(d) None of the above.

Q 16) If $\alpha: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ and $\beta: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ are translations such that $\alpha((1,1,1,1))=$ $(1,0,-1,3)$ and $\beta((2,2,2,2))=(2,0,3,4)$ then $\alpha \beta(0,0,0,0)$ is
(a) $(0,0,0,0)$.
(b) $(0,-3,-1,4)$.
(c) $(0,3,1,-4)$.
(d) None of these.

Q 17) If $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be an isometry defined by $\alpha((x, y))=\left(\frac{x}{2}+\frac{\sqrt{3} y}{2}-\frac{1}{2}, \frac{-\sqrt{3} x}{2}+\frac{y}{2}+\frac{\sqrt{3}}{2}\right)$ and $\alpha((x, y))=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ then
(a) $x=1, y=-1$.
(b) $x=\sqrt{3}, y=1$.
(c) $x=1, y=1$.
(d) None of these.

Q 18) Let α be an orthogonal transformation of the plane such that the matrix of $\alpha \mathrm{w}$. r. t. the standard basis of \mathbb{R}^{2} is $\left(\begin{array}{cc}-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)$, then α represents
(a) a rotation about origin through $\frac{\pi}{4}$.
(b) a rotation about origin through $\frac{5 \pi}{4}$.
(c) a rotation about the line $y=-x$.
(d) None of the above.

Q 19) Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ represents the rotation about origin by angle $\frac{\pi}{4}$ and $\beta: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ represents a reflection about y-axis. Then $\beta \circ \alpha$ represents
(a) a rotation about origin through angle $\frac{3 \pi}{8}$.
(b) reflection in the line $y=x$.
(c) a rotation about origin through angle $\frac{\pi}{8}$.
(d) None of the above.

Q 20) Let $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be an orthogonal transformation and $E=\left\{v \in \mathbb{R}^{3}: \alpha v=v\right\}$. Then
(a) $\operatorname{dim} E=1$
(b) $\operatorname{dim} E \geq 1$
(c) If $\operatorname{dim} E=2$, then α is reflection with respect to the plane.
(d) None of the above.

Q 21) Let $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ represents reflection in the plane $x+y+z=0$. The matrix of α with respect to the standard basis of \mathbb{R}^{3} is
(a) $\left(\begin{array}{ccc}\frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -1\end{array}\right)$
(b) $\frac{1}{3}\left(\begin{array}{ccc}1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
(d) None of these.

Q 22) Let V be an n-dimensional real inner product space. Suppose $B=\left\{e_{i}\right\}_{i=1}^{n}$ and $B^{\prime}=\left\{f_{i}\right\}_{i=1}^{n}$ are orthogonal basis of V. Then
(a) If $T: V \rightarrow V$ is a linear transformation such that $T\left(e_{i}\right)=f_{i}$ for $i=1$ to n, then T is orthogonal.
(b) If $T: V \rightarrow V$ is a linear transformation such that $T\left(e_{i}\right)=f_{i}$ for $i=1$ to n, then T need not be orthogonal.
(c) There exist a linear transformation $T: V \rightarrow V$ such that $\left\{T\left(e_{i}\right)\right\}_{i=1}^{n}$ is an orthogonal basis of V, but $\left\{T\left(f_{i}\right)\right\}_{i=1}^{n}$ is not an orthonormal basis of V.
(d) None of the above.

Q 23) Let A and B be $n \times n$ real orthogonal matrices. Then
(a) $A B$ and $A+B$ are orthogonal matrices. (b) $A B$ and $B A$ are orthogonal matrices.
(c) $A+B$ is an orthogonal matrix.
(d) None of the above.

Q 24) Let A, B be $n \times n$ real matrices. If A and $A B$ are orthogonal matrices, then
(a) B is orthogonal but $B A$ may not be orthogonal
(b) B and $B A$ both are orthogonal matrices.
(c) B may not be orthogonal matrix. (d) None of the above.

Q 25) Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be an isometry fixing origin and $\alpha \neq$ identity. Then
(a) $\alpha((1,0))$ is in the first quadrant.
(b) $\alpha((1,0)) \in\{(-1,0),(0,1),(0,-1)\}$.
(c) $\alpha((1,0))$ lies on the unit circle S^{1}.
(d) None of the above.

Q 26) If $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation such that $\langle v, w\rangle=0 \Rightarrow\langle\alpha(v), \alpha(w)\rangle=0$ $\forall v, w \in \mathbb{R}^{2}$. Then
(a) α is an isometry of \mathbb{R}^{2}.
(b) α is an orthogonal transformation.
(c) $\alpha=a T$ where T is an orthogonal transformation and $a \in \mathbb{R}$.
(d) None of the above.

Q 27) Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $\alpha((x, y))=(a x+b y+e, c x+d y+f)$ where $a, b, c, d, e, f \in \mathbb{R}$. Then α is an isometry if and only if
(a) $a d-b c \neq 0, e, f>0$
(b) $a d-b c= \pm 1$.
(c) $a^{2}+c^{2}=1, b^{2}+d^{2}=1, a b+c d=0$.
(d) None of the above.

Q 28) Let V be a finite dimensional inner product space and $\alpha: V \rightarrow V$ be an isometry. Then
(a) α is one-one may not be onto.
(b) α is one-one only if $\alpha(0)=0$.
(c) α is bijective.
(d) None of the above.

Q 29) Let $A=\left(\begin{array}{cc}10 & -9 \\ 4 & -2\end{array}\right)$, then
(a) $A^{-1}=\frac{1}{16}[A+8 I]$
(b) $A^{-1}=\frac{1}{16}[A-8 I]$
(c) $A^{-1}=\frac{1}{16}[-A+8 I]$
(d) $A^{-1}=\frac{1}{16}[-A-8 I]$

Q 30) The following pairs of n x n matrices do not have same characteristic polynomial.
(a) A and A^{t}.
(b) A and $P A P^{-1}$ where P is non singular $n \times n$ matrix.
(c) A and A^{2}.
(d) $A B$ and $B A$.

Q 31) Let $p(t)=t^{2}+b t+c$ where $b, c \in \mathbb{R}$. Then the number of real matrices having $p(t)$ as characteristic polynomial is
(a) One
(b) Two
(c) Infinity
(d) None of the above

Q 32) Let $p(t)=t^{3}-2 t^{2}+5$ be the characteristic polynomial of A then $\operatorname{det} A$ and $\operatorname{tr} A$ are
(a) $5,-2$
(b) 2,5
(c) $-5,2$
(d) $-2,5$

Q 33) If A is a 3×2 matrix over \mathbb{R} and B is a 2×3 matrix over \mathbb{R} and $p(t)$ is the characteristic polynomial of $A B$, then
(a) t^{3} divides $p(t)$
(b) t^{2} divides $p(t)$
(c) t divides $p(t)$
(d) None of the above

Q 34) Let A and B be $n \times n$ matrix over \mathbb{R} such that $\operatorname{tr} A=\operatorname{tr} B$ and $\operatorname{det} A=\operatorname{det} B$. Then
(a) Characteristic polynomial of $A=$ Characteristic polynomial of B.
(b) Characteristic polynomial of $A \neq$ Characteristic polynomial of B.
(c) Characteristic polynomial of $A=$ Characteristic polynomial of B if $n=3$.
(d) Characteristic polynomial of $A=$ Characteristic polynomial of B if $n=2$.

Q 35) Let A and B be $n \times n$ matrix over \mathbb{R} such that characteristic polynomial of $A=$ characteristic polynomial of B.Then
(a) A and B are similar matrices
(b) $\operatorname{det} A=\operatorname{det} B$
(c) $A B=B A$
(d) None of the above.

Q 36) Let $p(t)=t^{3}-2 t^{2}+15$ be the characteristic polynomial of A.Then $\operatorname{det} A$
(a) 15
(b) -15
(c) 0
(d) None of these

Q 37) Let $A=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$
(a) $A^{10}=\left(\begin{array}{cc}2^{10} & -2^{10} \\ -2^{10} & 2^{10}\end{array}\right)$
(b) $A^{10}=\left(\begin{array}{cc}2^{11} & -2^{11} \\ -2^{11} & 2^{11}\end{array}\right)$
(c) $A^{10}=\left(\begin{array}{cc}2^{9} & -2^{9} \\ -2^{9} & 2^{9}\end{array}\right)$
(d) $A^{10}=\left(\begin{array}{cc}-2^{9} & 2^{9} \\ 2^{9} & -2^{9}\end{array}\right)$

Q 38) Let A be a 3×3 matrix and λ_{1}, λ_{2} be only two distinct eigen values of A. Then its characteristics polynomial $k_{A}(x)$ is
(a) $\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)$
(b) $\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)^{2}$
(c) $\left(x-\lambda_{1}\right)^{2}\left(x-\lambda_{2}\right)$
(d) $\left(x-\lambda_{1}\right)^{2}\left(x-\lambda_{2}\right)$ or $\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)^{2}$

Q 39) Let characteristic polynomial of A is $t^{2}+a_{1} t+a_{0}$ and and characteristic polynomial of A^{-1} is $t^{2}+a_{1}^{\prime} t+a_{0}^{\prime}$. Then
(a) $a_{0} a_{0}^{\prime}=1$ and $a_{1}+a_{1}^{\prime}=1$
(b) $a_{1} a_{1}^{\prime}=1$ and $a_{0} a_{0}^{\prime}=1$
(c) $a_{0} a_{0}^{\prime}=1$
(d) $a_{0} a_{0}^{\prime}=1$ and $a_{1}^{\prime}=a_{1} a_{0}^{\prime}$

Q 40) If $p_{1}(t)=t^{2}+a_{1} t+a_{0}$ is characteristic polynomial of A and $p_{2}(t)=t^{2}+a_{1}^{\prime} t+a_{0}^{\prime}$ is characteristic polynomial of A^{2} then
(a) $a_{1}^{\prime}=a_{1}^{2}$ and $a_{0}^{\prime}=a_{0}^{2}$
(b) $a_{1}^{\prime}=2 a_{1}$ and $a_{0}^{\prime}=a_{0}^{2}$
(c) $a_{0}^{\prime}=a_{0}^{2}, a_{1}^{\prime}=a_{1}^{2}-2 a_{0}$
(d) None of the above

Q 41) Let $A_{6 \times 6}$ be a matrix with characteristic polynomial $x^{2}(x-1)(x+1)^{3}$, then trace A and determinant of A are
(a) $-2,0$
(b) 2, 0
(c) 3,1
(d) 3,0

Q 42) $\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)$ and $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ are similar (non- zero $\left.a, b, d\right)$
(a) for any reals a, b, d.
(b) if $a=d$.
(c) if $a \neq d$.
(d) never similar.

Q 43) Let $A_{6 \times 6}$ be a diagonal matrix over \mathbb{R} with characteristic polynomial $(x-2)^{4}(x+3)^{2}$.
Let $V=\left\{B \in M_{6}(\mathbb{R}): A B=B A\right\}$. Then $\operatorname{dim} V=$
(a) 8
(b) 12
(c) 6
(d) 20 .

Q 44) If $A-I_{n}$ is a $n \times n$ nilpotent matrix over \mathbb{R}, then characteristic polynomial of A is
(a) $(t-1)^{n}$
(b) t^{n}
(c) $t^{n}-1$
(d) $\left(t^{n-1}-1\right) t$

Q 45) If $A \in M_{2}(\mathbb{R}), \operatorname{tr} A=-1, \operatorname{det} A=-6$ then $\operatorname{det}\left(I_{2}+A\right)$ is
(a) -6
(b) -5
(c) -1
(d) None of the above.

Q 46) Let $A=\left[a_{i j}\right]_{10 \times 10}$ be a real matrix such that $a_{i, i+1}=1$ for $1 \leq i \leq 9$ and $a_{i j}=0$ otherwise, then
(a) $A^{9}(A-I)$
(b) $(A-I)^{10}$
$A^{10}=0$
$A(A-I)^{9}=0$

Q 47) $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is a linear transformation such that $T^{3}+3 T^{2}=4 I$. If $S=T^{4}+$ $3 T^{3}-4 I$, then
(a) S is not one-one.
(b) S is one-one.
(c) if 1 is not an eigen value of T then S is invertible.
(d) None of these.

Q 48) Which of the following statements are true

1. If the characteristic roots of two $n \times n$ matrices are same then their characteristic polynomials are same.
2. If the characteristic polynomials of two $n \times n$ matrices are same then their characteristic roots are same.
3. If eigen values of two $n \times n$ matrices are same then their eigen vectors are same.
4. The characteristic roots of two $n \times n$ matrices are same but their characteristic polynomials may not be same.
(a) ii and iv are true.
(b) i, iii are true.
(c) i, ii and iii are true.
(d) only ii is true.

Q 49) A 2×2 matrix A has the characteristic polynomial $x^{2}+2 x-1$, then the value of $\operatorname{det}\left(2 I_{2}+A\right)$ is
(a) $\frac{1}{\operatorname{det} A}$
(b) 0
(c) $2+\operatorname{det} A$
(d) $2 \operatorname{det} A$

Q 50) If A and B are $n \times n$ then trace of $I-A B+B A$ is
(a) 0
(b) n
(c) $2 \operatorname{tr} A B$
(d) None of these.

Diagonalization of a matrix and Orthogonal Diagonalization and Quadratic Form

1. If A and B are 3×3 matrices over R having $(1,-1,0)^{t},(1,1,0)^{t}$, and $(0,0,1)^{t}$ as eigenvectors. Then
(a) A and B are similar matrices.
(b) $A B=B A$.
(c) A and B have same eigenvalues.
(d) None of the above.
2. Let $A=\left(\begin{array}{cc}1 & 2 \\ 0 & -2\end{array}\right)$. Then,
(a) A and A^{100} are both diagonalizable.
(b) A is diagonalizable but A^{100} is not.
(c) Neither A nor A^{100} is diagonalizable.
(d) None of the above.
3. Let $A=\left(\begin{array}{ccc}1 & 2 & 4 \\ 0 & -1 & -2 \\ 0 & 0 & 3\end{array}\right)$ and $B=A^{100}+A^{20}+I$. Then,
(a) A, B are not diagonalizable.
(b) A is diagonalizable, but B is not diagonalizable.
(c) $A B$ is diagonalizable
(d) None of the above.
4. If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation such that $T(61,23)=(189,93)$ and $T(67,47)=(195,117)$. Then
(a) T is diagonalizable with distinct eigenvalues.
(b) T is not diagonalizable.
(c) T does not have distinct eigenvalues, but is diagonalizable.
(d) None of the above.
5. Which of the following matrices is not diagonalizable?
(a) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$
(d) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$
6. Let A be a $n \times n$ real orthogonal matrix. Then
(a) A has n real eigen values and each eigen value is ± 1.
(b) A is diagonalizable
(c) A may not have any real eigen value.
(d) (b) $A^{2}=I$
7. Let $A=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0\end{array}\right]$, then A is diagonalizable if
(a) $a=b, c=1$
(b) $a=1=b=c$
(c) $a=b=c=0$
(d) $a, b, c>0$
8. Let $A=\left[\begin{array}{cc}0 & a \\ 0 & -a\end{array}\right]$
(a) A is diagonalizable but not orthogonally diagonalizable.
(b) A is not diagonalizable for any $a \in \mathbb{R}$.
(c) A is orthogonally diagonalizable if and only if $a=1$
(d) None of these.
9. If A is a 4×4 matrix having all diagonal entries 0 , then
(a) 0 is an eigenvalue of A.
(b) $A^{4}=0$
(c) A is not diagonalizable.
(d) None of these.
10. Let A be an $n \times n$ non-zero nilpotent matrix over \mathbb{R}. Then
(a) A is diagonalizable.
(b) A is diagonalizable if n is odd.
(c) A is not diagonalizable.
(d) None of the above.
11. Let $A=\left(\begin{array}{cc}\alpha & -3 \\ 3 & 0\end{array}\right), \alpha \in \mathbb{R}$ is a parameter. Then
(a) A is not diagonalizable for any $\alpha \in \mathbb{R}$.
(b) A is diagonalizable $\forall \alpha \mathbb{R}$.
(c) A is not diagonalizable if $-6 \leq \alpha \leq 6$.
(d) A is diagonalizable if $-6<\alpha<6$.
12. Let A and B be $n \times n$ matrices over \mathbb{R} such that $A B=A-B$. If B is a diagonalizable matrix with only one eigenvalue 2 , then,
(a) 2 is also an eigenvalue of A. (b) A is diagonalizable and -2 is the only eigenvalue of A.
(c) A may not be diagonalizable. (d) None of these.
13. The matrix $A=\left(\begin{array}{lll}1 & 7 & 5 \\ 0 & 4 & 7 \\ 0 & 0 & 2\end{array}\right)$
(a) Not diagonizable. (b) is similar to $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2\end{array}\right)$
(c) is similar to $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$.
(d) None of the above.
14. Let A, B, C be 3×3 non-diagonal matrices over \mathbb{R} such that $A^{2}=A, B^{2}=-I,(C-3 I)^{2}=0$. Then
(a) A, B, C are all diagonalizable over \mathbb{R}.
(b) A, C are all diagonalizable over R.
(c) Only A is diagonalizable over \mathbb{R}.
(d) None of the above
15. Let $A \in M_{3}(\mathbb{R})$ such that $A B=B A$ for all $B \in M_{3}(\mathbb{R})$. Then
(a) A has distinct eigenvalues and is diagonalizable.
(b) A is not diagonalizable.
(c) A does not have distinct eigenvalues but is diagonalizable.
(d) None of the above.
16. If $A, B, C, D \in M_{2}(\mathbb{R})$ such that A, B, C, D are non-zero and not diagonal. If $A^{2}=I, B^{2}=B, C^{2}=0, C \neq 0$ and every eigenvalue of D is 2 , then
(a) A, B, C, D are all diagonalizable.
(b) B, C, D are diagonalizable.
(c) A, B are diagonalizable.
(d) Only D is diagonalizable.
17. If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ then
(a) Both A, B are diagonalizable, A is also orthogonally diagonalizable.
(b) Both A, B are orthogonally diagonalizable.
(c) Both A, B are diagonalizable, B is also orthogonally diagonalizable.
(d) Both A, B are diagonalizable, but both A, B are not orthogonally diagonalizable.
18. If $v=[1,0,1]$ is a row vector then,
(a) $v^{t} v$ is not orthogonally diagonalizable.
(b) $v v^{t} v$ is orthogonally diagonalizable.
(c) $v^{t} v$ is not diagonalizable.
(d) None of the above.
19. Let A be an $m \times n$ matrix over \mathbb{R}. Then
(a) $A A^{t}$ is not orthogonally diagonalizable.
(b) $I_{m}+A A^{t}$ is not orthogonally diagonalizable.
(c) $A A^{t}$ and $A^{t} A$ are orthogonally diagonalizable. (d) None of the above.
20. Let $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$. If $P^{t} A P=\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$, then $P=$
(a) $\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)$
(b) $\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$
(c) $\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$
(d) None of the above.
21. Let $A=\left(\begin{array}{cc}0 & a \\ -a & 0\end{array}\right), a \in \mathbb{R}$. Then
(a) A is not diagonalizable for any $a \in \mathbb{R}$.
(b) A is diagonalizable but not orthogonally diagonalizable.
(c) A is orthogonally diagonalizable if and only if $a=0$. (d) None of the above.
22. The equation $2 x^{2}-4 x y-y^{2}-4 x+10 y-13=0$ after rotation and translation can be reduced to
(a) an ellipse
(b) a hyperbola
(c) a parabola
(d) a pair of straight lines.
23. The conic $x^{2}+2 x y+y^{2}=1$ reduces to the standard form after rotation through a angle
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{3}$
(c) $\frac{2 \pi}{3}$
(d) $\frac{\pi}{6}$
24. The quadratic form $Q(x)=x_{1}^{2}+4 x_{1} x_{2}+x_{2}^{2}$ has
(a) rank $=1$, signature $=1$. (b) rank $=2$, signature $=0$.
(c) rank $=2$, signature $=2$.
(d) None of the above.
25. Let A be a 4×4 real symmetric matrix. Then there exists a 4×4 real symmetric matrix B such that
(a) $B^{2}=A$
(b) $B^{3}=A$
(c) $B^{4}=A$
(d) None of these
26. The matrix $\left(\begin{array}{ll}1 & 2 \\ 2 & k\end{array}\right)$ is positive definite if
(a) $k>4$
(b) $-2<k<2$
(c) $|k|>2$
(d) None of these.
27. $a x^{2}+b x y+c y^{2}=d$ where a, b, c are not all zero and $d>0$ represents
(a) ellipse if $b^{2}-4 a c>0$ and hyperbola if $b^{2}-4 a c<0$.
(b) ellipse if $b^{2}-4 a c<0$ and hyperbola if $b^{2}-4 a c>0$.
(c) is a circle if $b=0$ and $a=c$ else it is a hyperbola.
(d) None of these.
28. The conic $x^{2}+10 x+7 y=-32$ represents
(a) a hyperbola
(b) an ellipse.
(c) a parabola
(d) a pair of straight lines.
29. For the quadratic from $Q(x)=2 x_{1}^{2}+2 x_{2}^{2}-2 x_{1} x_{2}$
(a) rank $=2$, signature $=1$
(b) rank $=1$, signature $=1$
(c) rank $=2$, signature $=0$
(d) rank $=2$, signature $=2$
30. For the quadratic from $Q(x)=-3 x_{1}^{2}+5 x_{2}^{2}+2 x_{1} x_{2}$,
(a) rank $=2$, signature $=0$
(b) rank $=2$, signature $=1$
(c) rank $=2$, signature $=2$
(d) rank $=1$, signature $=1$
31. The symmetric matrix associated to the quadratic from $5\left(x_{1}-x_{2}\right)^{2}$ is,
(a) positive definite
(b) positive semi definite
(b) indefinite
(d) negative definite.
32. The quadratic form $Q(x)=2 x_{1}^{2}-4 x_{1} x_{2}-x_{2}^{2}$ after rotation can be reduced to standard form
(a) $3 y_{1}^{2}-2 y_{2}^{2}$ or $2 y_{1}^{2}+3 y_{2}^{2}$
(b) $3 y_{1}^{2}+2 y_{2}^{2}$
(c) $-3 y_{1}^{2}+2 y_{2}^{2}$
(d) $2 y_{1}^{2}-4 y_{2}^{2}$
33. The equation $x^{2}+y^{2}+z^{2}-2 x+4 y-6 z=11$ represents
(a) None of the below
(b) a hyperboloid of one sheet
(c) a hyperboloid of two sheet
(d) a sphere.
34. The conic $3 x^{2}-4 x y=2$ represents
(a) an ellipse
(b) a hyperbola
(c) a parabola
(d) a pair of straight lines.
35. Let $Q(X)=X^{t} A X$, where $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right], X=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{t}$. Then by orthogonal change of variable, $Q(X)$ can be reduced to
(a) $y_{1} y_{2}+y_{3}^{2}$
(b) $y_{1} y_{2}+y_{2}^{2}+y_{3}^{2}$
(c) $y_{1}^{2}+y_{2}^{2}+y_{3}^{2}-y_{4}^{2}$
(d) $y_{2}^{2}+y_{2}^{2}-y_{3} y_{4}$
36. If $A_{n \times n}$ be real matrix then which of the following is true-
(a) A has at least one eigen value.
(b) $\forall X, Y \in \mathbb{R},\langle A X, A Y\rangle>0$
(c) Each eigen value of $A^{t} A \geq 0$
(d) $A^{t} A$ has n eigen values.

Groups, Subgroups, Lagrange's Theorem, Cyclic Groups and Groups of Symmetry

(1) Let G be a group and $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \in G$. Then the inverse of $a_{1} a_{2}^{-1} a_{3} a_{4}^{-1} a_{5}$ is
(a) $a_{1}^{-1} a_{2} a_{3}^{-1} a_{4} a_{5}^{-1}$
(b) $a_{1}^{-1} a_{2}^{-1} a_{3}^{-1} a_{4}^{-1} a_{5}^{-1}$
(c) $a_{5}^{-1} a_{4} a_{3}^{-1} a_{2} a_{1}^{-1}$
(d) $a_{5}^{-1} a_{4}^{-1} a_{3}^{-1} a_{2}^{-1} a_{1}^{-1}$
(2) Let G be a group and $a, b, c \in G$. Consider the equations $a x b=c$ and $a^{-1} y^{-1} b^{-1}=c$. The equations have solutions:
(a) $x=a^{-1} c b^{-1}, y=a c b$
(b) $x=a c b, y=a^{-1} c^{-1} b^{-1}$
(c) $x=a^{-1} c b^{-1}, y=b^{-1} c^{-1} a^{-1}$
(d) None of the above.
(3) Let O denote the set of odd integers. Then
(a) O forms a group under the operation of addition
(b) O forms a group under the operation of multiplication
(c) O does not form a group under addition as O is not closed under addition.
(d) None of the above.
(4) Consider the set $G=\{\overline{5}, \overline{15}, \overline{25}, \overline{35}\} \bmod 40$ under multiplication of residue classes modulo 40 . Then
(a) G is not a group as $\overline{1} \notin G$.
(b) G is a group with $\overline{25}$ as identity element.
(c) G is not a group as $\overline{5}$ has no inverse in G.
(d) None of the above.
(5) Consider the equation $a x=b$ in the group S_{3}, where $a=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)$ and $b=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)$ (the operation of composite of maps being from left to right). Then
(a) $x=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$
(b) $x=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)$
(c) $x=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)$
(d) None of these.
(6) Consider the group (\mathbb{Z}, \circ), where \mathbb{Z} is the set of integers and $a \circ b=a+b-5$.
(a) -5 is the identity element of (\mathbb{Z}, o) and the inverse of $a \in \mathbb{Z}$ is $5-a$.
(b) 5 is the identity element of (\mathbb{Z}, \circ) and the inverse of $a \in \mathbb{Z}$ is $10-a$.
(c) 5 is the identity element of (\mathbb{Z}, \circ) and the inverse of $a \in \mathbb{Z}$ is $25-a$.
(d) None of the above.
(7) Consider the group $G=\left\{\left(\begin{array}{ll}a & a \\ a & a\end{array}\right): a \in \mathbb{Q}, a \neq 0\right\}$ under multiplication of 2×2 matrices. Then the identity element of the group G is
(a) $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
(b) $\left(\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$
(c) $\left(\begin{array}{ll}\frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4}\end{array}\right)$
(d) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(8) Let X be a non-empty set and $\mathcal{P}(X)$ denote the power set of X. For the group $(\mathcal{P}(X), \Delta)(\Delta$ being the symmetric difference)
(a) X is the identity element and for $A \in \mathcal{P}(X), A^{-1}=A$.
(b) \emptyset is the identity element and for $A \in \mathcal{P}(X), A^{-1}=A^{c}$.
(c) \emptyset is the identity element and for $A \in \mathcal{P}(X), A^{-1}=A$.
(d) None of the above.
(9) Let $G=G L_{n}(\mathbb{R})$. Then
(a) G is an infinite abelian group for $n=2$.
(b) G is an infinite non-abelian group for $n \geq 2$.
(c) G is an infinite group with identity element $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$.
(d) None of the above.
(10) Suppose H is a proper subgroup of \mathbb{Z} under addition and 12,14 and $18 \in H$, then
(a) $H=756 \mathbb{Z}$
(b) $H=2 \mathbb{Z}$
(c) $H=4 \mathbb{Z}$
(d) $H=44 \mathbb{Z}$
(11) Let G be a group having exactly 8 elements of order 3 . Then
(a) G has exactly 8 subgroups of order 3 .
(b) G has exactly 4 subgroups of order 3 .
(c) G has exactly 6 subgroups of order 3 .
(d) None of the above.
(12) Let G be an abelian group and G has an element of order 4 and an element of order 5. Then
(a) G has a subgroup of order 20 but may not have a subgroup of order 10 .
(b) G has a subgroup of order 10 .
(c) G does not have a subgroup of order 20 .
(d) None of the above.
(13) Let G be a cyclic group of order 4000. Then G has
(a) 400 elements of order 10 .
(b) 40 elements of order 10 .
(c) 4 elements of order 10 .
(d) None of the above.
(14) Let G be a group and $a \in G$. If $o(a)=30$. Then, the number of distinct right cosets of $\left\langle a^{4}\right\rangle$ in $\langle a\rangle$ is
(a) 6
(b) 2
(c) 15
(d) None of these.
(15) Let $G=S_{3}$ and consider the subgroup $H=\{I,(12)\}$ of G. Then
(a) Every left coset of H in G is also a right coset.
(b) $[G: H]=3$ and two left cosets of H in G are also right cosets.
(c) No left coset except H itself is a right coset of H in G.
(d) None of the above.
(16) Let $G=\mathbb{Z}$ and $H=5 \mathbb{Z}$. Then the following pair of left cosets are not equal. Then
(a) $11+5 \mathbb{Z}$ and $-39+5 \mathbb{Z}$.
(b) $11+5 \mathbb{Z}$ and $-25+5 \mathbb{Z}$.
(c) $11+5 \mathbb{Z}$ and $-34+5 \mathbb{Z}$.
(d) None of these.
(17) Let G be a group and $a, b \in G$ such that $a b=b a, o(a)=m, o(b)=n$. Then
(a) $o(a b)=m n$
(b) $o(a b)=$ l.c.m. $[m, n]$
(c) $o(a b)$ divides l.c.m. $[m, n]$ but may not be equal to l.c.m. $[m, n]$
(d) None of the above.
(18) Consider the Quaternion group $Q=\{ \pm 1, \pm i, \pm j, \pm k\}$, where $i j=-j i=k, j k=-k j=i$, $k i=-i k=j$ and $i^{2}=j^{2}=k^{2}=-1$. Then
(a) Q has exactly 3 subgroups of order 2 .
(b) Q has exactly 2 subgroups of order 4 .
(c) Q has exactly 1 subgroup of order 2 .
(d) None of the above.
(19) Let G be a cyclic group of order n generated by a. For non-zero integers r, s we have $\left\langle a^{r}\right\rangle \subseteq\left\langle a^{s}\right\rangle$ if and only if
(a) $r \mid s$
(b) $\operatorname{gcd}(n, s) \mid \operatorname{gcd}(n, r)$
(c) $s \mid r$
(d) None of these.
(20) The group $10 \mathbb{Z} \cap 15 \mathbb{Z}$ is generated by
(a) 5 and -5
(b) 60 and -60
(c) 30 and -30
(d) None of these.
(21) Let G be a group and $a, b \in G$. If $o(a)=18$ and $o(b)=12$. Then $\langle a\rangle \cap\langle b\rangle$ has order
(a) 1
(b) 1 or 6
(c) 6
(d) 36 .
(22) Let H be the smallest subgroup of $\left(\mathbb{Z}_{40},+\right)$ containing $\overline{24}$ and $\overline{10}$. Then H is generated by
(a) 36
(b) 37
(c) 38
(d) 39 .
(23) If G is a group having exactly one proper non-trivial subgroup, then order of G is
(a) even
(b) p^{2} where p is a prime
(c) odd
(d) $p q$ where p, q are distinct primes.
(24) Let G be an abelian group of order 10 and $S=\left\{g \in G: g \neq g^{-1}\right\}$. Then S has
(a) 2 elements
(b) 4 elements
(c) 8 elements
(d) None of these
(25) The group of symmetries of a square has order
(a) 4
(b) 24
(c) 8
(d) None of these
(26) The group of symmetries of
(a) a square is abelian.
(b) a rectangle is abelian.
(c) an equilateral triangle is abelian.
(d) None of the above.
(27) Let G be the group of symmetries of a square. The center of G
(a) is trivial
(b) has four elements.
(c) has exactly two elements.
(d) None of these.
(28) Let G be the group of symmetries of a regular pentagon. Then G has
(a) 5 reflections and 5 rotations (including the trivial one).
(b) 10 reflections and 10 rotations.
(c) No reflections and 10 rotations.
(d) None of the above.

Group Homomorphisms, Isomorphisms

(1) For a positive integer n, let $U(n)=\{\bar{x}: 1 \leq x \leq n,(x, n)=1\}$ denote the group of prime residue classes modulo n under multiplication. Then
(a) $U(8)$ and $U(10)$ are isomorphic groups.
(b) $U(10)$ and $U(12)$ are isomorphic groups.
(c) $U(8)$ and $U(12)$ are isomorphic groups.
(d) None of the above.
(2) Let $\mathbb{Q}^{*}=\mathbb{Q}-0, \mathbb{R}^{*}=\mathbb{R}-0, \mathbb{Q}^{+}=$set of positive rational numbers, $\mathbb{R}^{+}=$set of positive real numbers. Which of the following pairs of groups are isomorphic groups.
(i) $(\mathbb{Q},+)$ and $(\mathbb{Z},+)$
(ii) $(\mathbb{Q},+)$ and $\left(\mathbb{Q}^{*}, \cdot\right)$
(iii) $(\mathbb{Q},+)$ and $\left(\mathbb{Q}^{+}, \cdot\right)$ (iv) $(\mathbb{R},+)$ and $\left(\mathbb{R}^{+}, \cdot\right)$
(a) (ii) and (iv) only
(b) (iii) and (iv) only
(c) only (iv)
(d) None of these
(3) Consider the homomorphism $\phi:\left(\mathbb{C}^{*}, \cdot\right) \rightarrow\left(\mathbb{C}^{*}, \cdot\right)$ defined by $\phi(x)=x^{5}$. Let $K=\operatorname{ker} \phi$.
(a) K is an infinite group of \mathbb{C}^{*}.
(b) K is a trivial group.
(c) K is the group of fifth roots of unity and $|K|=5$.
(d) None of the above.
(4) Let G be a cyclic group of order 7 . Let $\phi: G \rightarrow G$ be defined by $\phi(x)=x^{4}$.
(a) ϕ is not a group homomorphism.
(b) ϕ is a group homomorphism which is not one-one.
(c) ϕ is a group homomorphism which is not onto.
(d) None of the above.
(5) Which of the following statements is true.
(a) $\left(\mathbb{Z}_{4},+\right)$ and V_{4} (Klein's 4 group) are isomorphic.
(b) $\left(\mathbb{Z}_{4},+\right)$ and μ_{4} (The group of fourth roots of unity) are isomorphic.
(c) V_{4} and μ_{4} are isomorphic.
(d) None of the above.
(6) Let Q_{8} denote the quaternion group $\{ \pm 1, \pm i, \pm j, \pm k\}$ where $i^{2}=j^{2}=-1, i j=k=-j i \quad\left(Q_{8}=\right.$ $\langle i, j\rangle)$. Consider the map $\phi: Q_{8} \rightarrow Z_{2}$ be defined by $\phi(i)=\overline{0}, \phi(j)=\overline{1}$. Then
(a) ϕ is not a group homonorphism.
(b) ϕ is a group homomorphism and $\operatorname{ker} \phi=\{1, i\}$.
(c) ϕ is a group homomorphism and ker $\phi=\{ \pm i\}$.
(d) None of the above.
(7) Let $U(16)$ denote the group of prime residue classes modulo 16 under multiplication. Which of the following statements are false?
(a) $\phi_{1}: U(16) \rightarrow U(16)$ defined by $\phi_{1}=x^{3}$ is a group automorphism.
(b) $\phi_{2}: U(16) \rightarrow U(16)$ defined by $\phi_{2}=x^{5}$ is a group automorphism.
(c) $\phi_{3}: U(16) \rightarrow U(16)$ defined by $\phi_{3}=x^{9}$ is not a group automorphism.
(d) $\phi_{4}: U(16) \rightarrow U(16)$ defined by $\phi_{4}=x^{4}$ is not a group automorphism.
(8) Let G be an abelian group which has no element of order 2 and $\phi: G \rightarrow G$ is defined by $\phi(x)=x^{2}$. Then
(a) ϕ is an automorphism of G.
(b) ϕ is a group homomorphism which may not be one-one.
(c) ϕ is an automorphism of G if G is finite.
(d) ϕ is not a group homomorphism.
(9) Consider the group G, where $G=\left\{\left(\begin{array}{ll}a & a \\ a & a\end{array}\right): a \in \mathbb{R}, a \neq 0\right\}$ under multiplication of 2×2 matrices. Then
(a) G is isomorphic to $(\mathbb{R},+)$.
(b) G is isomorphic to $\left(\mathbb{R}^{*}, \cdot \cdot\right)$.
(c) G is isomorphic to $S L_{2}(\mathbb{R})$.
(d) G is isomorphic to $O_{2}(\mathbb{R})$.
(10) Let m and n be integers. Then
(a) The groups ($m \mathbb{Z},+$) and $(n \mathbb{Z},+)$ are isomorphic.
(b) The groups $(m \mathbb{Z},+)$ and $(n \mathbb{Z},+)$ are isomorphic if and only if $m=-n$.
(c) The groups $(m \mathbb{Z},+)$ and $(n \mathbb{Z},+)$ are not isomorphic if $m \neq n$.
(d) The groups $(m \mathbb{Z},+)$ and $(n \mathbb{Z},+)$ are isomorphic for all non-zero integers m and n.
(11) Let G be a cyclic group of order n. Then $\operatorname{Aut}(G)$ has
(a) n elements
(b) $\phi(n)$ elements
(c) 1 element
(d) $n-1$ elements.
(12) The map $f: G L_{2}(\mathbb{R}) \rightarrow G L_{2}(\mathbb{R})$ defined by $f(A)=\left(A^{t}\right)^{-1}$ is
(a) not a group homomorphism.
(b) group homomorphism and ker $f=S L_{2} \mathbb{R}$.
(c) group homomorphism and $\operatorname{ker} f=O_{2} \mathbb{R}$.
(d) a group automorphism.
(13) The number of group homomorphisms from S_{3} to $\left(\mathbb{Z}_{3},+\right)$ is
(a) 1
(b) 0
(c) 3
(d) 2
(14) The number of group automorphisms of V_{4} (Klein's four group)is
(a) 4
(b) 2
(c) 3
(d) 6
(15) Let G be an abelian group of order n. The map $\phi: G \rightarrow G$ defined by $\phi(x)=x^{m}$ where m ia a positive integer is
(a) a group homomorphism if and only if m, n are relatively prime.

