Quotient Space and Orthogonal Transformations, Isometries, Cayley-Hamilton Theorem and its application

- Q 1) Let $V = \mathbb{R}^3$, $W_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}$ and $W_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 x_2 + x_3 = 0\}$ are subspaces of V. then
 - (a) $dimV/W_1 = dimV/W_2 = 2$, $dimW_2/W_1 \cap W_2 = 1$
 - (b) $dimV/W_1 = dimV/W_2 = 1, dimW_2/W_1 \cap W_2 = 1$
 - (c) $dimV/W_1 = dimV/W_2 = 1$, $dimW_2/W_1 \cap W_2 = 2$
 - (d) None of the above.
- Q 2) Let $V = M_2(\mathbb{R})$, $W_1 = \text{Space of } 2 \times 2 \text{ real symmetric matrices}$, $W_2 = \text{Space of } 2 \times 2 \text{ real skew symmetric matrices}$.
 - (a) $dimV/W_1 = 1$, $dimV/W_2 = 1$ (b) $dimV/W_1 = 2$, $dimV/W_2 = 2$
 - (c) $dimV/W_1 = 1$, $dimV/W_2 = 3$ (d) None of the above.
- Q 3) Let $V = P_2[x]$, the space of polynomial of degree ≤ 2 over \mathbb{R} along with zero polynomial and $W = \{ f \in V : f(0) = 0 \}$. Then
 - (a) $\{\overline{1}, \overline{x+1}, \overline{(x+1)^2}\}$ is the basis of the quotient space V/W.
 - (b) $\{\overline{x+1}, \overline{x^2+1}\}$ is the basis of the quotient space V/W
 - (c) $\{\overline{x+1}\}$ is the basis of the quotient space V/W
 - (d) None of the above.
- Q 4) Let V be a real vector space and $T : \mathbb{R}^6 \to V$ be a linear transformation such that $S = \{Te_2, Te_4, Te_6\}$ spans V. Then, which of the following is true?
 - (a) S is a basis of V
 - (b) $\{e_1 + KerT, e_3 + KerT, e_5 + KerT\}$ is a basis of $\mathbb{R}^6/KerT$
 - (c) $dimV/ImT \ge 3$
 - (d) $dim \mathbb{R}^6 / KerT \leq 3$
- Q 5) Consider $W = \{(x, y, z) \in \mathbb{R}^3 : 2x + 2y + z = 0, 3x + 3y 2z = 0, x + y 3z = 0\}$. Then $dim\mathbb{R}^3/W$ is
 - (a) 1 (b) 2 (c) 3 (d) 0
- Q 6) Consider the linear transformation $T: P_2[\mathbb{R}] \to M_2(\mathbb{R})$ defined by $T(f) = \begin{pmatrix} f(0) f(2) & 0 \\ 0 & f(1) \end{pmatrix}$ where $P_2[\mathbb{R}]$ = space of polynomials of degree ≤ 2 along with 0 polynomial. Then
 - (a) kerT = 0 and $dim(M_2(\mathbb{R})/ImT) = 3$
 - (b) $dim(P_2[\mathbb{R}]/KerT) = 1$
 - (c) T is one-one and onto.
 - (d) $dim(P_2[\mathbb{R}]/KerT) = 2$

Q 7) Let
$$V = M_2(\mathbb{R})$$
 and $W = \left\{ A \in M_2(\mathbb{R}) : A \begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix} A \right\}$. Then

- (a) dimV/W = 0 (b) dimV/W = 1
- (c) dimV/W = 2 (d) dimV/W = 3
- Q 8) Let $V = \mathbb{R}^4$ and $W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2 \text{ and } x_3 = x_4\}$ a subspace of V. Then
 - (a) $\{\overline{(1,1,0,0)},\overline{(0,1,0,1)}\}\$ is the basis of V/W.
 - (b) $\{\overline{(1,0,1,0)},\overline{(0,-1,0,-1)}\}\$ is the basis of V/W
 - (c) $\{\overline{(1,0,1,0)}, \overline{(0,1,0,1)}\}\$ is the basis of V/W
 - (d) None of the above.

Q 9) Let
$$V = M_2(\mathbb{R})$$
. Consider the subspaces $W_1 = \left\{ \begin{pmatrix} a & -a \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R} \right\}$ and $W_2 = \left\{ \begin{pmatrix} a & b \\ -a & d \end{pmatrix} : a, b, d \in \mathbb{R} \right\}$. Then

- (a) $dimV/W_1 = dimV/W_2 = 2$, $dimW_2/W_1 \cap W_2 = 1$
- (b) $dimV/W_1 = dimV/W_2 = 1, dimW_2/W_1 \cap W_2 = 1$
- (c) $dimV/W_1 = dimV/W_2 = 1, dimW_2/W_1 \cap W_2 = 2$
- (d) None of the above.

Q 10) Let
$$V = M_2(\mathbb{R})$$
 and $W = \{A \in M_2(\mathbb{R}) : Tr(A) = 0\}$ a subspace of V. Then (a) $\left\{ \begin{array}{c} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}$ is the basis of V/W . (b) $\left\{ \begin{array}{c} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}$ is the basis of V/W (c) $\left\{ \begin{array}{c} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}$ is the basis of V/W (d) None of the above.

- Q 11) Let $V = P_n[x]$, the space of polynomials of degree \leq n over \mathbb{R} along with zero polynomial and D denote the linear transformation $D: V \to P_{n-1}[x]$ defined by $D(f) = \frac{df}{dx}$. If W = kerD, then
 - (a) dim V/W = n 1. (b) dim V/W = 1
 - (c) dimV/W = n (d) None of these.
- Q 12) Let A be a 5×7 matrix over \mathbb{R} . Suppose rank A = 3. A linear transformation $T : \mathbb{R}^7 \to \mathbb{R}^5$ is defined by T(X) = AX, where X is a column vector in \mathbb{R}^7 , and W = kerT, U = ImgT, then
 - (a) $dim \mathbb{R}^7/W = 3$, $dim \mathbb{R}^5/U = 2$. (b) $dim \mathbb{R}^7/W = 2$, $dim \mathbb{R}^5/U = 2$.
 - (c) $dim \mathbb{R}^7/W = 2$, $dim \mathbb{R}^5/U = 1$. (d) None of the above.
- Q 13) Let $V = M_2(\mathbb{R})$ and $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. A linear transformation $T: V \to V$ is defined by T(B) = AB B. Then
 - (a) T is a linear isomorphism. (b) dimV/kerT = 1.
 - (c) dimV/kerT = 2. (d) None of these.

- Q 14) Let U, W be vector spaces over \mathbb{R} with bases $\{u_1, u_2, ..., u_m\}$ and $\{w_1, w_2, ..., w_n\}$ respectively. Let $V = U \oplus V$ and linear transformation $P_U : V \to U$ be defined by $P_U(u+v)=u$, where $u\in U$ and $w\in W$. Then
 - (a) $dimV/kerP_U = n$. (b) $dimV/kerP_U = m$.
 - (c) $dimV/kerP_U = m n$. (d) None of these.
- Q 15) Let $V = \mathbb{R}^2, W = \{(x, y) \in \mathbb{R}^2 : y = x\}$. Then
 - (a) $\{\overline{(1,1)}\}$ is a bases of V/W. (b) $\{\overline{(1,0)}\}$ is a bases of V/W.
 - (c) $\{\overline{(1,1)},\overline{(1,-1)}\}\$ is a bases of V/W. (d) None of the above.
- Q 16) If $\alpha: \mathbb{R}^4 \to \mathbb{R}^4$ and $\beta: \mathbb{R}^4 \to \mathbb{R}^4$ are translations such that $\alpha((1,1,1,1)) =$ (1,0,-1,3) and $\beta((2,2,2,2)) = (2,0,3,4)$ then $\alpha\beta(0,0,0,0)$ is
 - (a) (0,0,0,0). (b) (0,-3,-1,4). (c) (0,3,1,-4). (d) None of these.
- Q 17) If $\alpha: \mathbb{R}^2 \to \mathbb{R}^2$ be an isometry defined by $\alpha((x,y)) = (\frac{x}{2} + \frac{\sqrt{3}y}{2} \frac{1}{2}, \frac{-\sqrt{3}x}{2} + \frac{y}{2} + \frac{\sqrt{3}}{2})$ and $\alpha((x,y)) = (\frac{\sqrt{3}}{2}, \frac{1}{2})$ then (a) x = 1, y = -1. (b) $x = \sqrt{3}, y = 1$. (c) x = 1, y = 1. (d) None of these.
- Q 18) Let α be an orthogonal transformation of the plane such that the matrix of α w.
 - r. t. the standard basis of \mathbb{R}^2 is $\begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$, then α represents
 - (a) a rotation about origin through $\frac{\pi}{4}$. (b) a rotation about origin through $\frac{5\pi}{4}$. (c) a rotation about the line y=-x. (d) None of the above.
- Q 19) Let $\alpha: \mathbb{R}^2 \to \mathbb{R}^2$ represents the rotation about origin by angle $\frac{\pi}{4}$ and $\beta: \mathbb{R}^2 \to \mathbb{R}^2$ represents a reflection about y-axis. Then $\beta \circ \alpha$ represents
 - (a) a rotation about origin through angle $\frac{3\pi}{8}$. (b) reflection in the line y = x. (c) a rotation about origin through angle $\frac{\pi}{8}$. (d) None of the above.
- Q 20) Let $\alpha : \mathbb{R}^3 \to \mathbb{R}^3$ be an orthogonal transformation and $E = \{v \in \mathbb{R}^3 : \alpha v = v\}$.
 - (a) dimE = 1(b) $dimE \geq 1$
 - (c) If dimE = 2, then α is reflection with respect to the plane.
 - (d) None of the above.
- Q 21) Let $\alpha: \mathbb{R}^3 \to \mathbb{R}^3$ represents reflection in the plane x+y+z=0. The matrix of α with respect to the standard basis of \mathbb{R}^3 is

(a)
$$\begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & 0\\ 0 & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -1 \end{pmatrix}$$
 (b) $\frac{1}{3} \begin{pmatrix} 1 & -2 & -2\\ -2 & 1 & -2\\ -2 & -2 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$ (d) None of these.

- Q 22) Let V be an n-dimensional real inner product space. Suppose $B = \{e_i\}_{i=1}^n$ and $B' = \{f_i\}_{i=1}^n$ are orthogonal basis of V. Then
 - (a) If $T: V \to V$ is a linear transformation such that $T(e_i) = f_i$ for i = 1 to n, then T is orthogonal.

- (b) If $T: V \to V$ is a linear transformation such that $T(e_i) = f_i$ for i = 1 to n, then T need not be orthogonal.
- (c) There exist a linear transformation $T: V \to V$ such that $\{T(e_i)\}_{i=1}^n$ is an orthogonal basis of V, but $\{T(f_i)\}_{i=1}^n$ is not an orthonormal basis of V.
- (d) None of the above.
- Q 23) Let A and B be $n \times n$ real orthogonal matrices. Then
 - (a) AB and A + B are orthogonal matrices. (b) AB and BA are orthogonal matrices.
 - (c) A + B is an orthogonal matrix. (d) None of the above.
- Q 24) Let A, B be $n \times n$ real matrices. If A and AB are orthogonal matrices, then
 - (a) B is orthogonal but BA may not be orthogonal (b) B and BA both are orthogonal matrices.
 - (c) B may not be orthogonal matrix. (d) None of the above.
- Q 25) Let $\alpha: \mathbb{R}^2 \to \mathbb{R}^2$ be an isometry fixing origin and $\alpha \neq$ identity. Then
 - (a) $\alpha((1,0))$ is in the first quadrant. (b) $\alpha((1,0)) \in \{(-1,0),(0,1),(0,-1)\}.$
 - (c) $\alpha((1,0))$ lies on the unit circle S^1 . (d) None of the above.
- Q 26) If $\alpha: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that $\langle v, w \rangle = 0 \Rightarrow \langle \alpha(v), \alpha(w) \rangle = 0$ $\forall v, w \in \mathbb{R}^2$. Then
 - (a) α is an isometry of \mathbb{R}^2 . (b) α is an orthogonal transformation.
 - (c) $\alpha = aT$ where T is an orthogonal transformation and $a \in \mathbb{R}$. (d) None of the above.
- Q 27) Let $\alpha: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\alpha((x,y)) = (ax + by + e, cx + dy + f)$ where $a, b, c, d, e, f \in \mathbb{R}$. Then α is an isometry if and only if

 - (a) $ad bc \neq 0, e, f > 0$ (b) $ad bc = \pm 1$. (c) $a^2 + c^2 = 1, b^2 + d^2 = 1, ab + cd = 0$. (d) None of the above.
- Q 28) Let V be a finite dimensional inner product space and $\alpha: V \to V$ be an isometry. Then
 - (a) α is one-one may not be onto. (b) α is one-one only if $\alpha(0) = 0$.
 - (c) α is bijective. (d) None of the above.

Q 29) Let
$$A = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$$
, then

(a)
$$A^{-1} = \frac{1}{16}[A + 8I]$$
 (b) $A^{-1} = \frac{1}{16}[A - 8I]$

(a)
$$A^{-1} = \frac{1}{16}[A+8I]$$
 (b) $A^{-1} = \frac{1}{16}[A-8I]$ (c) $A^{-1} = \frac{1}{16}[-A+8I]$ (d) $A^{-1} = \frac{1}{16}[-A-8I]$

- Q 30) The following pairs of n x n matrices do not have same characteristic polynomial.
 - (b) A and PAP^{-1} where P is non singular $n \times n$ matrix. (a) A and A^t .
 - (c) A and A^2 . (d) AB and BA.
- Q 31) Let $p(t) = t^2 + bt + c$ where $b, c \in \mathbb{R}$. Then the number of real matrices having p(t)as characteristic polynomial is
 - (b) Two (a) One
 - (c) Infinity (d) None of the above
- Q 32) Let $p(t) = t^3 2t^2 + 5$ be the characteristic polynomial of A then det A and tr A

 - (a) 5, -2 (b) 2, 5 (c) -5, 2 (d) -2, 5
- Q 33) If A is a 3×2 matrix over \mathbb{R} and B is a 2×3 matrix over \mathbb{R} and p(t) is the characteristic polynomial of AB, then
 - (a) t^3 divides p(t) (b) t^2 divides p(t)
 - (c) t divides p(t) (d) None of the above
- Q 34) Let A and B be $n \times n$ matrix over \mathbb{R} such that trA = trB and detA = detB. Then
 - (a) Characteristic polynomial of A = Characteristic polynomial of B.
 - (b) Characteristic polynomial of $A \neq$ Characteristic polynomial of B.
 - (c) Characteristic polynomial of A =Characteristic polynomial of B if n=3.
 - (d) Characteristic polynomial of A = Characteristic polynomial of B if n = 2.
- Q 35) Let A and B be $n \times n$ matrix over \mathbb{R} such that characteristic polynomial of A =characteristic polynomial of B. Then
 - (a) A and B are similar matrices
- (b) $\det A = \det B$

(c) AB = BA

- (d) None of the above.
- Q 36) Let $p(t) = t^3 2t^2 + 15$ be the characteristic polynomial of A. Then det A (a) 15 (b) -15 (c) 0 (d) None of these

Q 37) Let
$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
 (a) $A^{10} = \begin{pmatrix} 2^{10} & -2^{10} \\ -2^{10} & 2^{10} \end{pmatrix}$ (b) $A^{10} = \begin{pmatrix} 2^{11} & -2^{11} \\ -2^{11} & 2^{11} \end{pmatrix}$ (c) $A^{10} = \begin{pmatrix} 2^9 & -2^9 \\ -2^9 & 2^9 \end{pmatrix}$ (d) $A^{10} = \begin{pmatrix} -2^9 & 2^9 \\ 2^9 & -2^9 \end{pmatrix}$

Q 38) Let A be a 3×3 matrix and λ_1, λ_2 be only two distinct eigen values of A. Then its characteristics polynomial $k_A(x)$ is

(a)
$$(x - \lambda_1)(x - \lambda_2)$$

```
(b) (x - \lambda_1)(x - \lambda_2)^2

(c) (x - \lambda_1)^2(x - \lambda_2)

(d) (x - \lambda_1)^2(x - \lambda_2) or (x - \lambda_1)(x - \lambda_2)^2

Q 39) Let characteristic polynomial of A is t^2 + a_1t + a_0 and and characteristic polynomial of A^{-1} is t^2 + a_1't + a_0'. Then

(a) a_0a_0' = 1 and a_1 + a_1' = 1 (b) a_1a_1' = 1 and a_0a_0' = 1 (c) a_0a_0' = 1 (d) a_0a_0' = 1 and a_1' = a_1a_0'
```

Q 40) If $p_1(t) = t^2 + a_1t + a_0$ is characteristic polynomial of A and $p_2(t) = t^2 + a'_1t + a'_0$ is characteristic polynomial of A^2 then

```
(a) a_1'=a_1^2 and a_0'=a_0^2 (b) a_1'=2a_1 and a_0'=a_0^2 (c) a_0'=a_0^2, a_1'=a_1^2-2a_0 (d) None of the above
```

Q 41) Let $A_{6\times 6}$ be a matrix with characteristic polynomial $x^2(x-1)(x+1)^3$, then trace A and determinant of A are

```
(a) -2, 0 (b) 2, 0 (c) 3, 1 (d) 3, 0
```

Q 42) $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$ and $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ are similar (non-zero a, b, d)

- (a) for any reals a, b, d. (b) if a = d.
- (c) if $a \neq d$. (d) never similar.

Q 43) Let $A_{6\times 6}$ be a diagonal matrix over \mathbb{R} with characteristic polynomial $(x-2)^4(x+3)^2$. Let $V = \{B \in M_6(\mathbb{R}) : AB = BA\}$. Then dim V =

(a) 8 (b) 12 (c) 6 (d) 20.

Q 44) If $A - I_n$ is a $n \times n$ nilpotent matrix over \mathbb{R} , then characteristic polynomial of A is

(a)
$$(t-1)^n$$
 (b) t^n (c) t^n-1 (d) $(t^{n-1}-1)t$

Q 45) If $A \in M_2(\mathbb{R})$, tr A = -1, det A = -6 then $det (I_2 + A)$ is

(a) -6 (b) -5 (c) -1 (d) None of the above.

Q 46) Let $A = [a_{ij}]_{10 \times 10}$ be a real matrix such that $a_{i,i+1} = 1$ for $1 \le i \le 9$ and $a_{ij} = 0$ otherwise, then

(a)
$$A^9(A-I)$$
 (b) $(A-I)^{10}$ $A^{10}=0$ $A(A-I)^9=0$

Q 47) $T: \mathbb{R}^4 \to \mathbb{R}^4$ is a linear transformation such that $T^3 + 3T^2 = 4I$. If $S = T^4 + 3T^3 - 4I$, then

- (a) S is not one-one. (b) S is one-one.
- (c) if 1 is not an eigen value of T then S is invertible.
- (d) None of these.

- Q 48) Which of the following statements are true
 - 1. If the characteristic roots of two $n \times n$ matrices are same then their characteristic polynomials are same.
 - 2. If the characteristic polynomials of two $n \times n$ matrices are same then their characteristic roots are same.
 - 3. If eigen values of two $n \times n$ matrices are same then their eigen vectors are same.
 - 4. The characteristic roots of two $n \times n$ matrices are same but their characteristic polynomials may not be same.
 - (a) ii and iv are true. (b) i, iii are true.
 - (c) i, ii and iii are true. (d) only it is true.
- Q 49) A 2×2 matrix A has the characteristic polynomial $x^2 + 2x 1$, then the value of $\det (2I_2 + A) \text{ is}$
 - (a) $\frac{1}{\det A}$ (b) 0 (c) $2 + \det A$ (d) $2 \det A$
- Q 50) If A and B are $n \times n$ then trace of I AB + BA is
 - (a) 0 (b) n (c) $2 \operatorname{tr} AB$ (d) None of these.

Diagonalization of a matrix and Orthogonal Diagonalization and Quadratic Form

- 1. If A and B are 3×3 matrices over R having $(1,-1,0)^t$, $(1,1,0)^t$, and $(0,0,1)^t$ as eigenvectors. Then
 - (a) A and B are similar matrices.
- (b) AB = BA.
- (c) A and B have same eigenvalues. (d) None of the above.
- 2. Let $A = \begin{pmatrix} 1 & 2 \\ 0 & -2 \end{pmatrix}$. Then,
 - (a) A and A^{100} are both diagonalizable. (b) A is diagonalizable but A^{100} is not.
 - (c) Neither A nor A^{100} is diagonalizable. (d) None of the above.

3. Let
$$A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix}$$
 and $B = A^{100} + A^{20} + I$. Then,

- (a) A, B are not diagonalizable. (b) A is diagonalizable, but B is not diagonalizable.
- (c) AB is diagonalizable
- (d) None of the above.
- 4. If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that T(61,23) = (189,93) and T(67,47) = (195,117). Then
 - (a) T is diagonalizable with distinct eigenvalues.
- (b) T is not diagonalizable.
- (c) T does not have distinct eigenvalues, but is diagonalizable. (d) None of the above.
- 5. Which of the following matrices is not diagonalizable

(a)
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

- 6. Let A be a $n \times n$ real orthogonal matrix. Then
 - (a) A has n real eigen values and each eigen value is ± 1 . (b) A is diagonalizable
 - (c) A may not have any real eigen value.

(d) (b) $A^2 = I$

7. Let
$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \end{bmatrix}$$
, then A is diagonalizable if

(a) $a = b, c = 1$ (b) $a = 1 = b = c$ (c) $a = b = c = 0$ (d) $a, b, c > 0$

(a)
$$a = b, c = 1$$
 (b) $a = 1 = b = c$ (c) $a = b = c = 0$ (d) $a, b, c > 0$

- 8. Let $A = \begin{bmatrix} 0 & a \\ 0 & -a \end{bmatrix}$
 - (a) A is diagonalizable but not orthogonally diagonalizable.
 - (b) A is not diagonalizable for any $a \in \mathbb{R}$.
 - (c) A is orthogonally diagonalizable if and only if a=1
- (d) None of these.
- 9. If A is a 4×4 matrix having all diagonal entries 0, then
 - (a) 0 is an eigenvalue of A. (b) $A^4 = 0$ (c) A is not diagonalizable. (d) None of these.
- 10. Let A be an $n \times n$ non-zero nilpotent matrix over \mathbb{R} . Then
 - (a) A is diagonalizable.
- (b) A is diagonalizable if n is odd.
- (c) A is not diagonalizable. (d) None of the above.

- 11. Let $A = \begin{pmatrix} \alpha & -3 \\ 3 & 0 \end{pmatrix}$, $\alpha \in \mathbb{R}$ is a parameter. Then
 - (a) A is not diagonalizable for any $\alpha \in \mathbb{R}$. (b) A is diagonalizable $\forall \alpha \mathbb{R}$.
 - (c) A is not diagonalizable if $-6 \le \alpha \le 6$. (d) A is diagonalizable if $-6 < \alpha < 6$.
- 12. Let A and B be $n \times n$ matrices over \mathbb{R} such that AB = A B. If B is a diagonalizable matrix with only one eigenvalue 2, then,
 - (a) 2 is also an eigenvalue of A. (b) A is diagonalizable and -2 is the only eigenvalue of A.
 - (c) A may not be diagonalizable. (d) None of these.
- 13. The matrix $A = \begin{pmatrix} 1 & 7 & 5 \\ 0 & 4 & 7 \\ 0 & 0 & 2 \end{pmatrix}$
 - (a) Not diagonizable. (b) is similar to $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$
 - (c) is similar to $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. (d) None of the above.
- 14. Let A, B, C be 3×3 non-diagonal matrices over \mathbb{R} such that

$$A^2 = A, B^2 = -I, (C - 3I)^2 = 0.$$
 Then

- (a) A, B, C are all diagonalizable over \mathbb{R} . (b) A, C are all diagonalizable over R.
- (c) Only A is diagonalizable over \mathbb{R} .
- (d) None of the above
- 15. Let $A \in M_3(\mathbb{R})$ such that AB = BA for all $B \in M_3(\mathbb{R})$. Then
 - (a) A has distinct eigenvalues and is diagonalizable.
 - (b) A is not diagonalizable.
 - (c) A does not have distinct eigenvalues but is diagonalizable.
 - (d) None of the above.
- 16. If $A, B, C, D \in M_2(\mathbb{R})$ such that A, B, C, D are non-zero and not diagonal. If $A^2 = I, B^2 = B, C^2 = 0, C \neq 0$ and every eigenvalue of D is 2, then
 - (a) A, B, C, D are all diagonalizable. (b) B, C, D are diagonalizable.
 - (c) A, B are diagonalizable.
- (d) Only D is diagonalizable.
- 17. If $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ then
 - (a) Both A, B are diagonalizable, A is also orthogonally diagonalizable.
 - (b) Both A, B are orthogonally diagonalizable.
 - (c) Both A,B are diagonalizable, B is also orthogonally diagonalizable.
 - (d) Both A,B are diagonalizable, but both A,B are not orthogonally diagonalizable.

- 18. If v = [1, 0, 1] is a row vector then,
 - (a) $v^t v$ is not orthogonally diagonalizable.
 - (b) vv^tv is orthogonally diagonalizable.
 - (c) $v^t v$ is not diagonalizable.
 - (d) None of the above.
- 19. Let A be an $m \times n$ matrix over \mathbb{R} . Then
 - (a) AA^t is not orthogonally diagonalizable.
 - (b) $I_m + AA^t$ is not orthogonally diagonalizable.
 - (c) AA^t and A^tA are orthogonally diagonalizable. (d) None of the above.

20. Let
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
. If $P^t A P = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$, then $P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ (a) $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$ (b) $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ (c) $\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ (d) None of the above.

21. Let
$$A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$$
, $a \in \mathbb{R}$. Then

- (a) A is not diagonalizable for any $a \in \mathbb{R}$.
- (b) A is diagonalizable but not orthogonally diagonalizable.
- (c) A is orthogonally diagonalizable if and only if a = 0. (d) None of the above.
- 22. The equation $2x^2 4xy y^2 4x + 10y 13 = 0$ after rotation and translation can be reduced to
 - (a) an ellipse (b) a hyperbola (c) a parabola (d) a pair of straight lines.
- 23. The conic $x^2 + 2xy + y^2 = 1$ reduces to the standard form after rotation through a angle

(a)
$$\frac{\pi}{4}$$
 (b) $\frac{\pi}{3}$ (c) $\frac{2\pi}{3}$ (d) $\frac{\pi}{6}$

- 24. The quadratic form $Q(x) = x_1^2 + 4x_1x_2 + x_2^2$ has
 - (a) rank = 1, signature = 1. (b) rank = 2, signature = 0.
 - (c) rank = 2, signature = 2. (d) None of the above.
- 25. Let A be a 4×4 real symmetric matrix. Then there exists a 4×4 real symmetric matrix B such that

(a)
$$B^2 = A$$
 (b) $B^3 = A$ (c) $B^4 = A$ (d) None of these

- 26. The matrix $\begin{pmatrix} 1 & 2 \\ 2 & k \end{pmatrix}$ is positive definite if
 - (a) k > 4 (b) -2 < k < 2 (c)|k| > 2 (d) None of these.
- 27. $ax^2 + bxy + cy^2 = d$ where a, b, c are not all zero and d > 0 represents
 - (a) ellipse if $b^2 4ac > 0$ and hyperbola if $b^2 4ac < 0$.
 - (b) ellipse if $b^2 4ac < 0$ and hyperbola if $b^2 4ac > 0$.
 - (c) is a circle if b = 0 and a = c else it is a hyperbola.
 - (d) None of these.

- 28. The conic $x^2 + 10x + 7y = -32$ represents
 - (a) a hyperbola (b) an ellipse. (c) a parabola (d) a pair of straight lines.
- 29. For the quadratic from $Q(x) = 2x_1^2 + 2x_2^2 2x_1x_2$
 - (a) rank = 2, signature = 1

(b) rank = 1, signature = 1

(c) rank = 2, signature = 0

- (d) rank = 2, signature = 2
- 30. For the quadratic from $Q(x) = -3x_1^2 + 5x_2^2 + 2x_1x_2$,
 - (a) rank = 2, signature = 0

(b) rank = 2, signature = 1

(c) rank = 2, signature = 2

- (d) rank = 1, signature = 1
- 31. The symmetric matrix associated to the quadratic from $5(x_1-x_2)^2$ is,
 - (a) positive definite (b) positive semi definite (b) indefinite (d) negative definite.
- 32. The quadratic form $Q(x) = 2x_1^2 4x_1x_2 x_2^2$ after rotation can be reduced to
 - (a) $3y_1^2 2y_2^2$ or $2y_1^2 + 3y_2^2$ (b) $3y_1^2 + 2y_2^2$ (c) $-3y_1^2 + 2y_2^2$ (d) $2y_1^2 4y_2^2$
- 33. The equation $x^2 + y^2 + z^2 2x + 4y 6z = 11$ represents
 - (a) None of the below
- (b) a hyperboloid of one sheet
- (c) a hyperboloid of two sheet (d) a sphere.
- 34. The conic $3x^2 4xy = 2$ represents
 - (a) an ellipse (b) a hyperbola (c) a parabola (d) a pair of straight lines.
- 35. Let $Q(X) = X^t A X$, where $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$, $X = (x_1, x_2, x_3, x_4)^t$. Then by
 - orthogonal change of variable, Q(X) can be reduced to
- (a) $y_1y_2 + y_3^2$ (b) $y_1y_2 + y_2^2 + y_3^2$ (c) $y_1^2 + y_2^2 + y_3^2 y_4^2$ (d) $y_2^2 + y_2^2 y_3y_4$
- 36. If $A_{n\times n}$ be real matrix then which of the following is true-
 - (a) A has at least one eigen value. (b) $\forall X, Y \in \mathbb{R}, \langle AX, AY \rangle > 0$
- - (c) Each eigen value of $A^t A \ge 0$
- (d) $A^t A$ has n eigen values.

Groups, Subgroups, Lagrange's Theorem, Cyclic Groups and Groups of Symmetry

(a) $a_1^{-1}a_2a_3^{-1}a_4a_5^{-1}$ (b) $a_1^{-1}a_2^{-1}a_3^{-1}a_4^{-1}a_5^{-1}$ (c) $a_5^{-1}a_4a_3^{-1}a_2a_1^{-1}$ (d) $a_5^{-1}a_4^{-1}a_3^{-1}a_2^{-1}a_1^{-1}$

(b) x = acb, $y = a^{-1}c^{-1}b^{-1}$

(d) None of the above.

(2) Let G be a group and $a,b,c \in G$. Consider the equations axb=c and $a^{-1}y^{-1}b^{-1}=c$. The

(1) Let G be a group and $a_1, a_2, a_3, a_4, a_5 \in G$. Then the inverse of $a_1a_2^{-1}a_3a_4^{-1}a_5$ is

equations have solutions:

(a) $x = a^{-1}cb^{-1}$, y = acb

(c) $x = a^{-1}cb^{-1}$, $y = b^{-1}c^{-1}a^{-1}$

(3)	Let O denote the set of odd integers. Then					
	 (a) O forms a group under the operation of addition (b) O forms a group under the operation of multiplication (c) O does not form a group under addition as O is not closed under addition. (d) None of the above. 					
(4)	Consider the set $G=\{\overline{5},\overline{15},\overline{25},\overline{35}\}$ mod 40 under multiplication of residue classes modulo 40. Then					
	 (a) G is not a group as 1 ∉ G. (b) G is a group with 25 as identity element. (c) G is not a group as 5 has no inverse in G. (d) None of the above. 					
(5)	Consider the equation $ax = b$ in the group S_3 , where $a = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ (the operation of composite of maps being from left to right). Then					
	(a) $x = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ (b) $x = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ (c) $x = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ (d) None of these.					
(6)	Consider the group (\mathbb{Z}, \circ) , where \mathbb{Z} is the set of integers and $a \circ b = a + b - 5$.					
	 (a) -5 is the identity element of (Z, ∘) and the inverse of a ∈ Z is 5 - a. (b) 5 is the identity element of (Z, ∘) and the inverse of a ∈ Z is 10 - a. (c) 5 is the identity element of (Z, ∘) and the inverse of a ∈ Z is 25 - a. (d) None of the above. 					
(7)	Consider the group $G = \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} : a \in \mathbb{Q}, a \neq 0 \right\}$ under multiplication of 2×2 matrices. Then the identity element of the group G is					
	(a) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ (c) $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$					
(8)	Let X be a non-empty set and $\mathcal{P}(X)$ denote the power set of X. For the group $(\mathcal{P}(X), \Delta)$ (Δ being the symmetric difference)					
	11					

	 (a) X is the identity element and for A ∈ P(X), A⁻¹ = A. (b) Ø is the identity element and for A ∈ P(X), A⁻¹ = A^c. 						
	(c) \emptyset is the identity element and for $A \in \mathcal{P}(X)$, $A^{-1} = A$.						
	(d) None of the above.						
(9)	Let $G = GL_n(\mathbb{R})$. Then						
	(a) G is an infinite abelian group for $n=2$.						
	(b) G is an infinite non-abelian group for $n \geq 2$.						
	(c) G is an infinite group with identity element $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.						
	(d) None of the above.						
(10)	Suppose H is a proper subgroup of \mathbb{Z} under addition and 12 , 14 and $18 \in H$, then						
	(a) $H = 756\mathbb{Z}$ (b) $H = 2\mathbb{Z}$ (c) $H = 4\mathbb{Z}$ (d) $H = 44\mathbb{Z}$						
(11)	Let G be a group having exactly 8 elements of order 3. Then						
	 (a) G has exactly 8 subgroups of order 3. (b) G has exactly 4 subgroups of order 3. (c) G has exactly 6 subgroups of order 3. (d) None of the above. 						
(12)	Let G be an abelian group and G has an element of order 4 and an element of order 5. Then						
	(a) G has a subgroup of order 20 but may not have a subgroup of order 10.						
	(b) G has a subgroup of order 10.						
	(c) G does not have a subgroup of order 20.(d) None of the above.						
(13)	Let G be a cyclic group of order 4000. Then G has						
	(a) 400 elements of order 10. (b) 40 elements of order 10.						
	(c) 4 elements of order 10. (d) None of the above.						
(14)	Let G be a group and $a \in G$. If $o(a) = 30$. Then, the number of distinct right cosets of $\langle a^4 \rangle$ in $\langle a \rangle$ is						
	(a) 6 (b) 2 (c) 15 (d) None of these.						
(15)	Let $G = S_3$ and consider the subgroup $H = \{I, (12)\}$ of G . Then						
	(a) Every left coset of H in G is also a right coset.						
	(b) $[G:H]=3$ and two left cosets of H in G are also right cosets.						
	(c) No left coset except H itself is a right coset of H in G.						
(10)	(d) None of the above.						
(16)	Let $G = \mathbb{Z}$ and $H = 5\mathbb{Z}$. Then the following pair of left cosets are not equal. Then						
	(a) $11 + 5\mathbb{Z}$ and $-39 + 5\mathbb{Z}$. (b) $11 + 5\mathbb{Z}$ and $-25 + 5\mathbb{Z}$. (c) $11 + 5\mathbb{Z}$ and $-34 + 5\mathbb{Z}$. (d) None of these.						
	TO LEE TOWN OUT OF FOUN. THE NOTE OF THESE.						

(17) Let G be a group and $a,b\in G$ such that $ab=ba,\,o(a)=m,\,o(b)=n.$ Then

	(a) $o(ab) = mn$					
	(b) $o(ab) = 1.c.m.[m, n]$					
	(c) $o(ab)$ divides l.c.m. $[m, n]$ but may not be equal to l.c.m. $[m, n]$ (d) None of the above.					
(18)	Consider the Quaternion group $Q=\{\pm 1,\pm i,\pm j,\pm k\}$, where $ij=-ji=k,\ jk=-kj=i,\ ki=-ik=j\ {\rm and}\ i^2=j^2=k^2=-1.$ Then					
	 (a) Q has exactly 3 subgroups of order 2. (b) Q has exactly 2 subgroups of order 4. (c) Q has exactly 1 subgroup of order 2. (d) None of the above. 					
(19)	Let G be a cyclic group of order n generated by a. For non-zero integers r, s we have $\langle a^r \rangle \subseteq \langle a^s \rangle$ f and only if					
	(a) $r \mid s$ (b) $gcd(n, s) \mid gcd(n, r)$ (c) $s \mid r$ (d) None of these.					
(20)	The group $10\mathbb{Z} \cap 15\mathbb{Z}$ is generated by					
	(a) $5 \text{ and } -5$ (b) $60 \text{ and } -60$ (c) $30 \text{ and } -30$ (d) None of these.					
(21)	Let G be a group and $a, b \in G$. If $o(a) = 18$ and $o(b) = 12$. Then $\langle a \rangle \cap \langle b \rangle$ has order					
	(a) 1 (b) 1 or 6 (c) 6 (d) 36.					
(22)	Let H be the smallest subgroup of $(\mathbb{Z}_{40}, +)$ containing $\overline{24}$ and $\overline{10}$. Then H is generated by					
	(a) 36 (b) 37 (c) 38 (d) 39.					
(23)	If G is a group having exactly one proper non-trivial subgroup, then order of G is					
	(a) even (b) p^2 where p is a prime (c) odd (d) pq where p,q are distinct primes.					
(24)	Let G be an abelian group of order 10 and $S = \{g \in G : g \neq g^{-1}\}$. Then S has					
	(a) 2 elements (b) 4 elements (c) 8 elements (d) None of these					
(25)	The group of symmetries of a square has order					
	(a) 4 (b) 24 (c) 8 (d) None of these					
(26)	The group of symmetries of					
	(a) a square is abelian.(b) a rectangle is abelian.(c) an equilateral triangle is abelian.(d) None of the above.					
(27)	Let G be the group of symmetries of a square. The center of G					
	(a) is trivial (b) has four elements. (c) has exactly two elements. (d) None of these.					
(28)	Let G be the group of symmetries of a regular pentagon. Then G has					
	(a) 5 reflections and 5 rotations (including the trivial one).					
	(b) 10 reflections and 10 rotations.					
	(c) No reflections and 10 rotations.					
	(d) None of the above.					

Group Homomorphisms, Isomorphisms

- (1) For a positive integer n, let $U(n) = \{\bar{x} : 1 \le x \le n, (x, n) = 1\}$ denote the group of prime residue classes modulo n under multiplication. Then
 - (a) U(8) and U(10) are isomorphic groups.
- (b) U(10) and U(12) are isomorphic groups.
- (c) U(8) and U(12) are isomorphic groups.
- (d) None of the above.
- (2) Let $\mathbb{Q}^* = \mathbb{Q} 0$, $\mathbb{R}^* = \mathbb{R} 0$, $\mathbb{Q}^+ = \text{set of positive rational numbers}$, $\mathbb{R}^+ = \text{set of positive real}$ numbers. Which of the following pairs of groups are isomorphic groups.
- (i) $(\mathbb{Q},+)$ and $(\mathbb{Z},+)$ (ii) $(\mathbb{Q},+)$ and (\mathbb{Q}^*,\cdot) (iii) $(\mathbb{Q},+)$ and (\mathbb{Q}^+,\cdot) (iv) $(\mathbb{R},+)$ and (\mathbb{R}^+,\cdot)

- (a) (ii) and (iv) only
- (b) (iii) and (iv) only

(c) only (iv)

- (d) None of these
- (3) Consider the homomorphism $\phi: (\mathbb{C}^*, \cdot) \to (\mathbb{C}^*, \cdot)$ defined by $\phi(x) = x^5$. Let $K = \ker \phi$.
 - (a) K is an infinite group of \mathbb{C}^* .
 - (b) K is a trivial group.
 - (c) K is the group of fifth roots of unity and |K| = 5.
 - (d) None of the above.
- (4) Let G be a cyclic group of order 7. Let $\phi: G \to G$ be defined by $\phi(x) = x^4$.
 - (a) ϕ is not a group homomorphism.
 - (b) ϕ is a group homomorphism which is not one-one.
 - (c) ϕ is a group homomorphism which is not onto.
 - (d) None of the above.
- (5) Which of the following statements is **true**.
 - (a) $(\mathbb{Z}_4, +)$ and V_4 (Klein's 4 group) are isomorphic.
 - (b) $(\mathbb{Z}_4, +)$ and μ_4 (The group of fourth roots of unity) are isomorphic.
 - (c) V_4 and μ_4 are isomorphic.
 - (d) None of the above.
- (6) Let Q_8 denote the quaternion group $\{\pm 1, \pm i, \pm j, \pm k\}$ where $i^2 = j^2 = -1, ij = k = -ji$ $(Q_8 = -1, ij = k)$ $\langle i,j\rangle$). Consider the map $\phi:Q_8\to Z_2$ be defined by $\phi(i)=\bar{0},\ \phi(j)=\bar{1}.$ Then
 - (a) ϕ is not a group homomorphism.
 - (b) ϕ is a group homomorphism and ker $\phi = \{1, i\}$.
 - (c) ϕ is a group homomorphism and $\ker \phi = \{\pm i\}$.
 - (d) None of the above.

	(d) $\phi_4: U(16) \to U(16)$ defined by $\phi_4 = x^4$ is not a group automorphism.							
(8)	8) Let G be an abelian group which has no element of order 2 and $\phi: G \to G$ is defined by $\phi(x) = x^2$. Then							
	 (a) φ is an automorphism of G. (b) φ is a group homomorphism which may not be one-one. (c) φ is an automorphism of G if G is finite. (d) φ is not a group homomorphism. 							
(9)	(9) Consider the group G, where $G = \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} : a \in \mathbb{R}, a \neq 0 \right\}$ under multiplication of 2×2 matrix. Then							
	(a) G is isom	morphic to ($\mathbb{R},+).$	(b) G is isomorphic to (\mathbb{R}^*, \cdot) .				
	(c) G is isom	morphic to S	$SL_2(\mathbb{R}).$	(d) G is isomorphic to $O_2(\mathbb{R})$.				
(10)	Let m and n	be integers.	Then					
	 (a) The groups (mℤ, +) and (nℤ, +) are isomorphic. (b) The groups (mℤ, +) and (nℤ, +) are isomorphic if and only if m = -n. (c) The groups (mℤ, +) and (nℤ, +) are not isomorphic if m ≠ n. (d) The groups (mℤ, +) and (nℤ, +) are isomorphic for all non-zero integers m and n. 							
(11)	(11) Let G be a cyclic group of order n. Then $Aut(G)$ has							
	(a) n element	nts (b) q	$\phi(n)$ elements	(c) 1 element (d) $n-1$ elements.				
(12)	The map f :	$GL_2(\mathbb{R}) \to C$	$GL_2(\mathbb{R})$ define	ed by $f(A) = (A^t)^{-1}$ is				
	 (12) The map f: GL₂(ℝ) → GL₂(ℝ) defined by f(A) = (A^t)⁻¹ is (a) not a group homomorphism. (b) group homomorphism and ker f = SL₂ℝ. (c) group homomorphism and ker f = O₂ℝ. (d) a group automorphism. 							
(13)	The number	of group hor	nomorphisms	s from S_3 to $(\mathbb{Z}_3, +)$ is				
	(a) 1	(b) 0	(c) 3	(d) 2				
(14)	The number	of group aut	omorphisms	of V_4 (Klein's four group) is				
	(a) 4	(b) 2	(c) 3	(d) 6				
(15)	. The map $\phi: G \to G$ defined by $\phi(x) = x^m$ where m is a							
	(a) a group homomorphism if and only if m, n are relatively prime.							
17								

(7) Let U(16) denote the group of prime residue classes modulo 16 under multiplication. Which of

(a) $\phi_1: U(16) \to U(16)$ defined by $\phi_1 = x^3$ is a group automorphism. (b) $\phi_2: U(16) \to U(16)$ defined by $\phi_2 = x^5$ is a group automorphism.

(c) $\phi_3: U(16) \to U(16)$ defined by $\phi_3 = x^9$ is not a group automorphism.

the following statements are **false**?