Quotient Space and Orthogonal Transformations, Isometries, Cayley-Hamilton Theorem and its application

- Q 1) Let $V = \mathbb{R}^3$, $W_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}$ and $W_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 x_2 + x_3 = 0\}$ are subspaces of V. then
 - (a) $dimV/W_1 = dimV/W_2 = 2$, $dimW_2/W_1 \cap W_2 = 1$
 - (b) $dimV/W_1 = dimV/W_2 = 1, dimW_2/W_1 \cap W_2 = 1$
 - (c) $dimV/W_1 = dimV/W_2 = 1, dimW_2/W_1 \cap W_2 = 2$
 - (d) None of the above.
- Q 2) Let $V=M_2(\mathbb{R})$, $W_1=$ Space of 2×2 real symmetric matrices, $W_2=$ Space of 2×2 real skew symmetric matrices.
 - (a) $dimV/W_1 = 1$, $dimV/W_2 = 1$ (b) $dimV/W_1 = 2$, $dimV/W_2 = 2$
 - (c) $dimV/W_1 = 1$, $dimV/W_2 = 3$ (d) None of the above.
- Q 3) Let $V = P_2[x]$, the space of polynomial of degree ≤ 2 over \mathbb{R} along with zero polynomial and $W = \{ f \in V : f(0) = 0 \}$. Then
 - (a) $\{\overline{1}, \overline{x+1}, \overline{(x+1)^2}\}$ is the basis of the quotient space V/W.
 - (b) $\{\overline{x+1}, \overline{x^2+1}\}$ is the basis of the quotient space V/W
 - (c) $\{\overline{x+1}\}$ is the basis of the quotient space V/W
 - (d) None of the above.
- Q 4) Let V be a real vector space and $T : \mathbb{R}^6 \to V$ be a linear transformation such that $S = \{Te_2, Te_4, Te_6\}$ spans V. Then, which of the following is true?
 - (a) S is a basis of V
 - (b) $\{e_1 + KerT, e_3 + KerT, e_5 + KerT\}$ is a basis of $\mathbb{R}^6/KerT$
 - (c) $dimV/ImT \ge 3$
 - (d) $dim \mathbb{R}^6 / KerT \leq 3$
- Q 5) Consider $W = \{(x, y, z) \in \mathbb{R}^3 : 2x + 2y + z = 0, 3x + 3y 2z = 0, x + y 3z = 0\}$. Then $dim\mathbb{R}^3/W$ is
 - (a) 1 (b) 2 (c) 3 (d) 0
- Q 6) Consider the linear transformation $T: P_2[\mathbb{R}] \to M_2(\mathbb{R})$ defined by $T(f) = \begin{pmatrix} f(0) f(2) & 0 \\ 0 & f(1) \end{pmatrix}$ where $P_2[\mathbb{R}]$ = space of polynomials of degree ≤ 2 along with 0 polynomial. Then
 - (a) kerT = 0 and $dim(M_2(\mathbb{R})/ImT) = 3$
 - (b) $dim(P_2[\mathbb{R}]/KerT) = 1$
 - (c) T is one-one and onto.
 - (d) $dim(P_2[\mathbb{R}]/KerT) = 2$

Q 7) Let
$$V = M_2(\mathbb{R})$$
 and $W = \left\{ A \in M_2(\mathbb{R}) : A \begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix} A \right\}$. Then

- (a) dimV/W = 0 (b) dimV/W = 1
- (c) dimV/W = 2 (d) dimV/W = 3
- Q 8) Let $V = \mathbb{R}^4$ and $W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2 \text{ and } x_3 = x_4\}$ a subspace of V. Then
 - (a) $\{\overline{(1,1,0,0)},\overline{(0,1,0,1)}\}\$ is the basis of V/W.
 - (b) $\{\overline{(1,0,1,0)},\overline{(0,-1,0,-1)}\}\$ is the basis of V/W
 - (c) $\{\overline{(1,0,1,0)},\overline{(0,1,0,1)}\}\$ is the basis of V/W
 - (d) None of the above.

Q 9) Let
$$V = M_2(\mathbb{R})$$
. Consider the subspaces $W_1 = \left\{ \begin{pmatrix} a & -a \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R} \right\}$ and $W_2 = \left\{ \begin{pmatrix} a & b \\ -a & d \end{pmatrix} : a, b, d \in \mathbb{R} \right\}$. Then

- (a) $dimV/W_1 = dimV/W_2 = 2$, $dimW_2/W_1 \cap W_2 = 1$
- (b) $dimV/W_1 = dimV/W_2 = 1, dimW_2/W_1 \cap W_2 = 1$
- (c) $dimV/W_1 = dimV/W_2 = 1, dimW_2/W_1 \cap W_2 = 2$
- (d) None of the above.

Q 10) Let
$$V = M_2(\mathbb{R})$$
 and $W = \{A \in M_2(\mathbb{R}) : Tr(A) = 0\}$ a subspace of V. Then (a) $\left\{ \begin{array}{c} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}$ is the basis of V/W . (b) $\left\{ \begin{array}{c} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}$ is the basis of V/W (c) $\left\{ \begin{array}{c} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}$ is the basis of V/W (d) None of the above.

- Q 11) Let $V = P_n[x]$, the space of polynomials of degree \leq n over \mathbb{R} along with zero polynomial and D denote the linear transformation $D: V \to P_{n-1}[x]$ defined by $D(f) = \frac{df}{dx}$. If W = kerD, then
 - (a) dim V/W = n 1. (b) dim V/W = 1
 - (c) dimV/W = n (d) None of these.
- Q 12) Let A be a 5×7 matrix over \mathbb{R} . Suppose rank A = 3. A linear transformation $T : \mathbb{R}^7 \to \mathbb{R}^5$ is defined by T(X) = AX, where X is a column vector in \mathbb{R}^7 , and W = kerT, U = ImgT, then
 - (a) $dim \mathbb{R}^7/W = 3$, $dim \mathbb{R}^5/U = 2$. (b) $dim \mathbb{R}^7/W = 2$, $dim \mathbb{R}^5/U = 2$.
 - (c) $dim \mathbb{R}^7/W = 2$, $dim \mathbb{R}^5/U = 1$. (d) None of the above.
- Q 13) Let $V = M_2(\mathbb{R})$ and $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. A linear transformation $T: V \to V$ is defined by T(B) = AB B. Then
 - (a) T is a linear isomorphism. (b) dimV/kerT = 1.
 - (c) dimV/kerT = 2. (d) None of these.

- Q 14) Let U, W be vector spaces over \mathbb{R} with bases $\{u_1, u_2, ..., u_m\}$ and $\{w_1, w_2, ..., w_n\}$ respectively. Let $V = U \oplus V$ and linear transformation $P_U : V \to U$ be defined by $P_U(u+v)=u$, where $u\in U$ and $w\in W$. Then
 - (a) $dimV/kerP_U = n$. (b) $dimV/kerP_U = m$.
 - (c) $dimV/kerP_U = m n$. (d) None of these.
- Q 15) Let $V = \mathbb{R}^2, W = \{(x, y) \in \mathbb{R}^2 : y = x\}$. Then
 - (a) $\{\overline{(1,1)}\}\$ is a bases of V/W. (b) $\{\overline{(1,0)}\}\$ is a bases of V/W.
 - (c) $\{\overline{(1,1)},\overline{(1,-1)}\}\$ is a bases of V/W. (d) None of the above.
- Q 16) If $\alpha: \mathbb{R}^4 \to \mathbb{R}^4$ and $\beta: \mathbb{R}^4 \to \mathbb{R}^4$ are translations such that $\alpha((1,1,1,1)) =$ (1,0,-1,3) and $\beta((2,2,2,2)) = (2,0,3,4)$ then $\alpha\beta(0,0,0,0)$ is
 - (a) (0,0,0,0). (b) (0,-3,-1,4). (c) (0,3,1,-4). (d) None of these.
- Q 17) If $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ be an isometry defined by $\alpha((x,y)) = (\frac{x}{2} + \frac{\sqrt{3}y}{2} \frac{1}{2}, \frac{-\sqrt{3}x}{2} + \frac{y}{2} + \frac{\sqrt{3}}{2})$ and $\alpha((x,y)) = (\frac{\sqrt{3}}{2}, \frac{1}{2})$ then
 (a) x = 1, y = -1. (b) $x = \sqrt{3}, y = 1$. (c) x = 1, y = 1. (d) None of these.
- Q 18) Let α be an orthogonal transformation of the plane such that the matrix of α w.
 - r. t. the standard basis of \mathbb{R}^2 is $\begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$, then α represents
 - (a) a rotation about origin through $\frac{\pi}{4}$. (b) a rotation about origin through $\frac{5\pi}{4}$. (c) a rotation about the line y=-x. (d) None of the above.
- Q 19) Let $\alpha: \mathbb{R}^2 \to \mathbb{R}^2$ represents the rotation about origin by angle $\frac{\pi}{4}$ and $\beta: \mathbb{R}^2 \to \mathbb{R}^2$ represents a reflection about y-axis. Then $\beta \circ \alpha$ represents
 - (a) a rotation about origin through angle $\frac{3\pi}{8}$. (b) reflection in the line y = x. (c) a rotation about origin through angle $\frac{\pi}{8}$. (d) None of the above.
- Q 20) Let $\alpha : \mathbb{R}^3 \to \mathbb{R}^3$ be an orthogonal transformation and $E = \{v \in \mathbb{R}^3 : \alpha v = v\}$.
 - (a) dimE = 1(b) dimE > 1
 - (c) If dimE = 2, then α is reflection with respect to the plane.
 - (d) None of the above.
- Q 21) Let $\alpha: \mathbb{R}^3 \to \mathbb{R}^3$ represents reflection in the plane x+y+z=0. The matrix of α with respect to the standard basis of \mathbb{R}^3 is

(a)
$$\begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & 0\\ 0 & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -1 \end{pmatrix}$$
 (b) $\frac{1}{3} \begin{pmatrix} 1 & -2 & -2\\ -2 & 1 & -2\\ -2 & -2 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$ (d) None of these.

- Q 22) Let V be an n-dimensional real inner product space. Suppose $B = \{e_i\}_{i=1}^n$ and $B' = \{f_i\}_{i=1}^n$ are orthogonal basis of V. Then
 - (a) If $T: V \to V$ is a linear transformation such that $T(e_i) = f_i$ for i = 1 to n, then T is orthogonal.

- (b) If $T: V \to V$ is a linear transformation such that $T(e_i) = f_i$ for i = 1 to n, then T need not be orthogonal.
- (c) There exist a linear transformation $T: V \to V$ such that $\{T(e_i)\}_{i=1}^n$ is an orthogonal basis of V, but $\{T(f_i)\}_{i=1}^n$ is not an orthonormal basis of V.
- (d) None of the above.
- Q 23) Let A and B be $n \times n$ real orthogonal matrices. Then
 - (a) AB and A+B are orthogonal matrices. (b) AB and BA are orthogonal matrices.
 - (c) A + B is an orthogonal matrix. (d) None of the above.
- Q 24) Let A, B be $n \times n$ real matrices. If A and AB are orthogonal matrices, then
 - (a) B is orthogonal but BA may not be orthogonal (b) B and BA both are orthogonal matrices.
 - (c) B may not be orthogonal matrix. (d) None of the above.
- Q 25) Let $\alpha: \mathbb{R}^2 \to \mathbb{R}^2$ be an isometry fixing origin and $\alpha \neq$ identity. Then
 - (a) $\alpha((1,0))$ is in the first quadrant. (b) $\alpha((1,0)) \in \{(-1,0),(0,1),(0,-1)\}.$
 - (c) $\alpha((1,0))$ lies on the unit circle S^1 . (d) None of the above.
- Q 26) If $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that $\langle v, w \rangle = 0 \Rightarrow \langle \alpha(v), \alpha(w) \rangle = 0$ $\forall v, w \in \mathbb{R}^2$. Then
 - (a) α is an isometry of \mathbb{R}^2 . (b) α is an orthogonal transformation.
 - (c) $\alpha = aT$ where T is an orthogonal transformation and $a \in \mathbb{R}$. (d) None of the above.
- Q 27) Let $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\alpha((x,y)) = (ax + by + e, cx + dy + f)$ where $a, b, c, d, e, f \in \mathbb{R}$. Then α is an isometry if and only if
 - (a) $ad bc \neq 0, e, f > 0$ (b) $ad bc = \pm 1$.
 - (c) $a^2 + c^2 = 1, b^2 + d^2 = 1, ab + cd = 0.$ (d) None of the above.
- Q 28) Let V be a finite dimensional inner product space and $\alpha: V \to V$ be an isometry. Then
 - (a) α is one-one may not be onto. (b) α is one-one only if $\alpha(0) = 0$.
 - (c) α is bijective. (d) None of the above.

Q 29) Let
$$A = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$$
, then

(a)
$$A^{-1} = \frac{1}{16}[A+8I]$$
 (b) $A^{-1} = \frac{1}{16}[A-8I]$ (c) $A^{-1} = \frac{1}{16}[-A+8I]$ (d) $A^{-1} = \frac{1}{16}[-A-8I]$

(c)
$$A^{-1} = \frac{1}{16}[-A + 8I]$$
 (d) $A^{-1} = \frac{1}{16}[-A - 8I]$

- Q 30) The following pairs of n x n matrices do not have same characteristic polynomial.
 - (b) A and PAP^{-1} where P is non singular $n \times n$ matrix. (a) A and A^t .
 - (d) AB and BA. (c) A and A^2 .
- Q 31) Let $p(t) = t^2 + bt + c$ where $b, c \in \mathbb{R}$. Then the number of real matrices having p(t)as characteristic polynomial is
 - (a) One (b) Two
 - (c) Infinity (d) None of the above
- Q 32) Let $p(t) = t^3 2t^2 + 5$ be the characteristic polynomial of A then det A and tr A

 - (a) 5, -2 (b) 2, 5(c) -5, 2 (d) -2, 5
- Q 33) If A is a 3×2 matrix over \mathbb{R} and B is a 2×3 matrix over \mathbb{R} and p(t) is the characteristic polynomial of AB, then
 - (a) t^3 divides p(t) (b) t^2 divides p(t)
 - (d) None of the above (c) t divides p(t)
- Q 34) Let A and B be $n \times n$ matrix over \mathbb{R} such that trA = trB and detA = detB. Then
 - (a) Characteristic polynomial of A = Characteristic polynomial of B.
 - (b) Characteristic polynomial of $A \neq$ Characteristic polynomial of B.
 - (c) Characteristic polynomial of A =Characteristic polynomial of B if n=3.
 - (d) Characteristic polynomial of A = Characteristic polynomial of B if n = 2.
- Q 35) Let A and B be $n \times n$ matrix over \mathbb{R} such that characteristic polynomial of A =characteristic polynomial of B. Then
 - (a) A and B are similar matrices
- (b) $\det A = \det B$

(c) AB = BA

- (d) None of the above.
- Q 36) Let $p(t) = t^3 2t^2 + 15$ be the characteristic polynomial of A. Then det A (a) 15 (b) -15 (c) 0 (d) None of these

Q 37) Let
$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
 (a) $A^{10} = \begin{pmatrix} 2^{10} & -2^{10} \\ -2^{10} & 2^{10} \end{pmatrix}$ (b) $A^{10} = \begin{pmatrix} 2^{11} & -2^{11} \\ -2^{11} & 2^{11} \end{pmatrix}$ (c) $A^{10} = \begin{pmatrix} 2^9 & -2^9 \\ -2^9 & 2^9 \end{pmatrix}$ (d) $A^{10} = \begin{pmatrix} -2^9 & 2^9 \\ 2^9 & -2^9 \end{pmatrix}$

Q 38) Let A be a 3×3 matrix and λ_1, λ_2 be only two distinct eigen values of A. Then its characteristics polynomial $k_A(x)$ is

(a)
$$(x - \lambda_1)(x - \lambda_2)$$

```
(b) (x - \lambda_1)(x - \lambda_2)^2

(c) (x - \lambda_1)^2(x - \lambda_2)

(d) (x - \lambda_1)^2(x - \lambda_2) or (x - \lambda_1)(x - \lambda_2)^2

Q 39) Let characteristic polynomial of A is t^2 + a_1t + a_0 and and characteristic polynomial of A^{-1} is t^2 + a_1't + a_0'. Then

(a) a_0a_0' = 1 and a_1 + a_1' = 1 (b) a_1a_1' = 1 and a_0a_0' = 1 (c) a_0a_0' = 1 (d) a_0a_0' = 1 and a_1' = a_1a_0'
```

Q 40) If $p_1(t) = t^2 + a_1t + a_0$ is characteristic polynomial of A and $p_2(t) = t^2 + a'_1t + a'_0$ is characteristic polynomial of A^2 then

```
(a) a_{1}^{'}=a_{1}^{2} and a_{0}^{'}=a_{0}^{2} (b) a_{1}^{'}=2a_{1} and a_{0}^{'}=a_{0}^{2} (c) a_{0}^{'}=a_{0}^{2}, a_{1}^{'}=a_{1}^{2}-2a_{0} (d) None of the above
```

Q 41) Let $A_{6\times 6}$ be a matrix with characteristic polynomial $x^2(x-1)(x+1)^3$, then trace A and determinant of A are

```
(a) -2, 0 (b) 2, 0 (c) 3, 1 (d) 3, 0
```

Q 42) $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$ and $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ are similar (non- zero a,b,d)

```
(a) for any reals a, b, d. (b) if a = d.
```

(c) if $a \neq d$. (d) never similar.

Q 43) Let $A_{6\times 6}$ be a diagonal matrix over \mathbb{R} with characteristic polynomial $(x-2)^4(x+3)^2$. Let $V = \{B \in M_6(\mathbb{R}) : AB = BA\}$. Then dim V =

Q 44) If $A - I_n$ is a $n \times n$ nilpotent matrix over \mathbb{R} , then characteristic polynomial of A is

(a)
$$(t-1)^n$$
 (b) t^n (c) t^n-1 (d) $(t^{n-1}-1)t$

Q 45) If $A \in M_2(\mathbb{R})$, tr A = -1, det A = -6 then $det (I_2 + A)$ is

Q 46) Let $A = [a_{ij}]_{10 \times 10}$ be a real matrix such that $a_{i,i+1} = 1$ for $1 \le i \le 9$ and $a_{ij} = 0$ otherwise, then

(a)
$$A^{9}(A-I)$$
 (b) $(A-I)^{10}$ $A^{10}=0$ $A(A-I)^{9}=0$

Q 47) $T: \mathbb{R}^4 \to \mathbb{R}^4$ is a linear transformation such that $T^3 + 3T^2 = 4I$. If $S = T^4 + 3T^3 - 4I$, then

(a) S is not one-one. (b) S is one-one.

(c) if 1 is not an eigen value of T then S is invertible.

(d) None of these.

- Q 48) Which of the following statements are true
 - 1. If the characteristic roots of two $n \times n$ matrices are same then their characteristic polynomials are same.
 - 2. If the characteristic polynomials of two $n \times n$ matrices are same then their characteristic roots are same.
 - 3. If eigen values of two $n \times n$ matrices are same then their eigen vectors are same.
 - 4. The characteristic roots of two $n \times n$ matrices are same but their characteristic polynomials may not be same.
 - (a) ii and iv are true. (b) i, iii are true.
 - (c) i, ii and iii are true. (d) only ii is true.
- Q 49) A 2×2 matrix A has the characteristic polynomial $x^2 + 2x 1$, then the value of $\det (2I_2 + A)$ is
 - (a) $\frac{1}{\det A}$ (b) 0 (c) $2 + \det A$ (d) $2 \det A$
- Q 50) If A and B are $n \times n$ then trace of I AB + BA is
 - (a) 0 (b) n (c) $2 \operatorname{tr} AB$ (d) None of these.

Eigen values and Eigen vectors, Similar matrices and Minimal polynomial

- Q 51) The product of all characteristic roots of a square matrix A is equal to
 - (a) 0 (b) 1 (c) |A| (d) None of these.
- Q 52) If eigen value of A is λ , then eigen value of A^2 is
 - (a) 1 (b) $\frac{1}{\lambda}$ (c) λ^2 (d) None of these.
- Q 53) If A is invertible matrix and eigen value of A is λ , then eigen value of A^{-1} is (a) 1 (b) $\frac{1}{\lambda}$ (c) λ (d) None of these.
- Q 54) If the determinant of a matrix A is non-zero, then its eigen values of A are (a) 1 (b) 0 (c) Non-zero (d) None of these.
- Q 55) If the determinant of a matrix A is zero, then one of its eigen values of A is (a) 1 (b) 0 (c) -1 (d) None of these.
- Q 56) The eigen space corresponding to eigen value 1 of $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ has basis
 - (a) $\{(1,0)\}$ (b) $\{(1,0),(0,1)\}$
 - (c) $\{(0,1)\}$ (d) $\{(1,1)\}$
- Q 57) Let $A=\begin{bmatrix} a & b & 1\\ c & d & 1\\ 1 & -1 & 0 \end{bmatrix}$ where $a,b,c,d\in\mathbb{R}$ such that a+b=c+d, then A has eigen

value

- (a) a + c (b) a + b (c) a d (d) b d
- Q 58) Zero is a eigen value of a linear map T from V to V if and only if
 - (a) $Ker T = \{0\}$ (b) T is bijective
 - (c) T is singular (d) T is non singular
- Q 59) The eigen values of a 3×3 real matrix A are 1,2,3. Then
 - (a) Inverse of A exists and it is $\frac{1}{6}(5I + 2A A^2)$
 - (b) Inverse of A exists and it is $\frac{1}{6}(5I + 2A + A^2)$
 - (c) Inverse of A does not exist
 - (d) None of the above
- Q 60) The matrix $A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 3 & -3 & 6 \end{pmatrix}$ has
 - (a) Only one distinct eigen value
 - (b) Only two distinct eigen values
 - (c) Three distinct eigen values
 - (d) None of the above

Q 61) The eigen vectors of the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	(1 (0	2\ 1)	generate
--	----------	----------	----------

- (a) a vector space with basis $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$
- (b) a vector space with basis $\left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$
- (c) a vector space with basis $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$
- (d) a vector space with basis $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$

Q 62) The eigen vectors of the matrix
$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
 generate a vector space of dimension (a) 1 (b) 2 (c) 3 (d) 4

Q 63) The eigen space E(5) of the matrix $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$ corresponding to the eigen value

$$\lambda = 5
(a) is \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
(b) is $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$

$$\lambda = 5$$
(a) is $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
(b) is $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$
(c) has a basis $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$
(d) has a basis $\left\{ \begin{pmatrix} 2 \\ -1 \end{pmatrix} \right\}$

Q 64) Let V a vector space over R and $I: V \to V$ be the identity map. Then

- (a) v is the only eigen vector of I for some $v \in V$
- (b) 2v is the only eigen vector of I for some $v \in V$
- (c) 3v is the only eigen vector of I for some $v \in V$
- (d) every vector in V is an eigen vector of I

Q 65) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map which rotates every vector $v \in \mathbb{R}^2$ through an angle $\frac{\pi}{4}$. Then T has

- (a) no eigen vectors
- (b) only two eigen vectors
- (c) only three eigen vectors
- (d) infinitely many eigen vectors

Q 66) Let $A_{3\times 3}$ be a real matrix of rank 1, then the eigen values of A are

(a)
$$0, 0, 1$$
 (b) $0, 0, tr A$ (c) $0, 0, det A$ (d) $0, 0, -det A$

Q 67) Let $A = [a_{ij}]$ be a 10×10 matrix with $aij = \begin{cases} 1 & \text{if } i+j=11 \\ 0 & \text{otherwise} \end{cases}$. Then the set of eigen values of A is

(a)
$$\{0,1\}$$
 (b) $\{1,-1\}$ (c) $\{0,1,10\}$ (d) $\{0,11\}$

Q 68) Let $A_{n\times n}$ be a real matrix, then

- (a) A, A^t have same determinant, same eigen values and same eigen vectors.
- (b) A, A^t have same determinant, same eigen values but eigen vectors may be different.
- (c) A, A^t have same eigen values but different determinants.
- (d) A, A^t have different eigen values.
- Q 69) Let $\sum_{j=1}^{n} a_{ij} = 1$ for a real matrix $A = [a_{ij}]$ then
 - (a) $(1, 1, \dots, 1)$ is an eigen vector of A corresponding to the eigen value 1.
 - (b) $(1,0,\cdots,0)$ is an eigen vector of A corresponding to the eigen value 1.
 - (c) $(1, 1, \dots, 1)$ is an eigen vector of A corresponding to the eigen value n.
 - (d) 1 is not an eigen value of A.
- Q 70) Let the characteristic polynomial of $A_{3\times3}$ be x(x-1)(x+2), then the characteristic polynomial of A^2 is
 - (a) x(x+1)(x-2) (b) x(x-1)(x-4)
 - (c) x(x+1)(x+4) (d) None of these.
- Q 71) If matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ a & 1 & b \\ 1 & 0 & 0 \end{bmatrix}$ has linearly independent eigen vectors corresponding to

eigen value 1, then

- (a) a = 0, b = 0. (b) a = 1, b = 1
- (c) for any a, b. (d) a + b = 0.
- Q 72) Let characteristic polynomial of $A_{2\times 2}$ be a real matrix and its characteristics polynomial is $x^2 3x + 2$. Then the characteristic polynomial of A^{-1} is
 - (a) $x^2 \frac{3}{2}x + \frac{1}{2}$ (b) $x^2 3x + 2$
 - (c) $x^2 2x + 3 = 0$ (d) $x^2 \frac{1}{2}x + \frac{3}{2}$
- Q 73) One of the eigen vectors of the matrix $A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$ over R is
 - (a) $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ (d) None of these.
- Q 74) If A is a square matrix of order n and λ is a scalar, then the characteristic polynomial of A is obtained by expanding the determinant:
 - (a) $|\lambda A|$ (b) $|\lambda A I_n|$ (c) $|A \lambda I_n|$ (d) None of these
- Q 75) At least one characteristic roots of every singular matrix is equal to
 - (a) 1 (b) -1 (c) 0 (d) None of these.
- Q 76) The characteristic roots of two matrices A and BAB^{-1} are
 - (a) The same (b) Different (c) Always zero (d) None of these.

- Q 77) The scalar λ is a characteristic root of the matrix A if:
 (a) $A \lambda I$ is non-singular (b) $A \lambda I$ is singular (c) A is singular (d) None of these.
- Q 78) If eigen value of A is λ , then eigen value of $P^{-1}AP$ is (a) 1 (b) $\frac{1}{\lambda}$ (c) λ (d) None of these.
- Q 79) If λ is a characteristic root of a matrix A then characteristic roots of -A and $\alpha I A$ respectively are
 - (a) $-\lambda$ and $\alpha \lambda$ (b) $-\lambda$ and α (c) $-\lambda$ and λ (d) None of these.
- Q 80) Which of the following statements are true
 - 1. If the characteristic roots of two $n \times n$ matrices are same then their characteristic polynomials are same.
 - 2. If the characteristic polynomials of two $n \times n$ matrices are same then their characteristic roots are same.
 - 3. If eigen values of two $n \times n$ matrices are same then their eigen vectors are same.
 - 4. The characteristic roots of two $n \times n$ matrices are same but their characteristic polynomials may not be same.
 - (a) ii and iv are true. (b) i, iii are true.
 - (c) i, ii and iii are true. (d) only ii is true.
- Q 81) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the orthogonal transformation of rotation through angle θ , then
 - (a) T has no eigen values for any $\theta \in (0, 2\pi)$.
 - (b) T has only one eigen value -1 for $\theta = \pi$ and no eigen values if $\theta \in (0, 2\pi) \{\pi\}$.
 - (c) T has eigen value 1 for $\theta = \pi/4$.
 - (d) T has only one eigen value for all $\theta \in (0, 2\pi)$.
- Q 82) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the orthogonal transformation of reflection in the line $y = \tan \frac{\theta}{2}x$, then
 - (a) T has no eigen value for any $\theta \in (0, 2\pi)$.
 - (b) T has only one eigen value 1 for every $\theta \in (0, 2\pi)$.
 - (c) T has two eigen values 1, -1 for every $\theta \in (0, 2\pi)$.
 - (d) T has an eigen value -1 for $\theta = \pi$.
- Q 83) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where $a, b, c, d \in \mathbb{Z}$ such that a + b = c + d, then
 - (a) A has two integer eigen values.
 - (b) A may not have any eigen value.
 - (c) A has two eigen values which may not be integers.
 - (d) A has two eigen values only if b, c = 0.

- Q 84) Let A be an $n \times n$ orthogonal matrix with det A = -1. Then
 - (a) -1 is the only eigenvalue of A. (b) -1 is an eigenvalue of A.
 - (c) A has at least one real eigenvalue only if n is odd. (d) None of the above.
- Q 85) Let A be an 2×2 orthogonal matrix with det A = 1. Then
 - (a) 1 is the eigenvalue of A. (b) -1 cannot be an eigenvalue of A.
 - (c) A may not have real eigenvalue. (d) None of the above.
- Q 86) Let x(x-1)(x+2) be the characteristic polynomial of a 3×3 matrix A, then the characteristic polynomial of A^2 is
 - (a) x(x-1)(x-4) (b) x(x+1)(x-2)
 - (c) x(x+1)(x+4) (d) None of these.
- Q 87) Which of the following statements are true-
 - (i) 0 is an eigen value of a matrix if and only if the matrix is singular.
 - (ii) $A_{n\times n}$ has at least one (real) eigen value if n is odd.
 - (iii) A matrix with all the diagonal entries equal to zero has zero eigen value.
 - (iv) det A = product of characteristic roots of A.
 - (a) all the statements are true.

(b) (i), (ii), (iv) are true.

(c) (i), (iii) are true.

(d) (i), (ii), (iii) are true.

Q 88) If A and B are 3×3 matrices over	R having $(1, -1, 0)^t$, $(1, 1, 0)^t$, and $(0, 0, 1)^t$ as		
eigenvectors. Then			
(a) A and B are similar matrices.	(b) $AB = BA$.		
(c) A and B have same eigenvalues.	(d) None of the above.		
Q 89) If $n \times n$ real matrices A, B are similar and $f(x)$ is a polynomial in real coefficients then $f(A), f(B)$ have			

- - (a) same characteristic polynomials but different minimal polynomials.
 - (b) same minimal polynomial but different characteristic polynomials.
 - (c) same characteristic polynomial and same minimal polynomial.
 - (d) characteristic polynomials are different as well as the minimal polynomials are different.
- Q 90) For square matrices A, B of same size, which of the following statements are true?
 - i. If A, B are similar then they have same characteristic polynomial.
 - ii. If A, B are similar then they have same eigen vectors.
 - iii. If A, B have same characteristic polynomial then A, B are similar.
 - iv If A, B have same characteristic roots then A, B are similar.
 - (a) i and iv

- (b) only i
- (c) i, ii and iv

(d) None.

Q 91) The matrix
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 is

- Q 91) The matrix $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is

 (a) similar to $\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$ (b) similar to $\begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$ (c) similar to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (d) not similar to any diagonal matrix
- Q 92) The matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is similar to the matrix

(a)
$$\begin{pmatrix} 10 & -12 \\ 4 & -5 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 3 & 2 \\ 5 & -4 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 6 & 4 \\ 2 & 1 \end{pmatrix}$$

- (d) None of the above
- Q 93) Degree of the minimal polynomial of $n \times n$ real matrix is
 - (a) equal to n.

- (b) less than or equal to n.
- (c) greater than n.

(d) less than n.

- Q 94) Minimal polynomial of $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ where A, B are square matrices, is
 - (a) L.C.M. of the minimal polynomials of A and B.
 - (b) G.C.D. of the minimal polynomials of A and B.
 - (c) product of the minimal polynomials of A and B.
 - (d) minimal polynomial of A- minimal polynomial of B.

Q 95) Let
$$A = \text{diag } \{1, 2, -1\}, B = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, C = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } D = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix},$$
 then

(a) B, C, D are similar to A.

- (b) Only D are similar to A.
- (c) None of B, C, D are similar to A.
- (d) A is similar to D.
- Q 96) If A is a square matrix with all its eigen values equal to 1, then
 - (a) A^k is similar to A for every positive integer k.
 - (b) A^k is not similar to A for any positive integer $k \neq 1$.
 - (c) A^k is similar to A for only k=2.
 - (d) $A^k = I$ for some positive integer k.
- Q 97) The minimal polynomial of the diagonal matrix $A = \text{diag } \{1, -1, 1, -1\}$ is
 - (a) $x^2 + 1$

- (b) $x^2 1$
- (c) $(x^2-1)^2$

- (d) None of these.
- Q 98) Let $A_{n\times n}$ be a real matrix, then the characteristic polynomial of A = the minimal polynomial of A if
 - (a) and only if A has n distinct characteristic roots.
 - (b) A has n distinct characteristic roots.
 - (c) only if A is a diagonal matrix.

- (d) A is nilpotent matrix.
- Q 99) The minimal polynomial of $\begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix}$ is
 - (a) x 1 for any $\alpha \in \mathbb{R}$.

- (b) $(x-1)^2$ for any $\alpha \in \mathbb{R}$.
- (c) x-1 if $\alpha = 0$ and $(x-1)^2$ otherwise. otherwise.
- (d) x-1 if $\alpha \neq 0$ and $(x-1)^2$
- Q 100) The minimal polynomial of $\begin{bmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 2 \end{bmatrix}$ is
 - (a) (x-1)(x-2) for any $\alpha, \beta, \gamma \in \mathbb{R}$.
 - (b) $(x-1)^2(x-2)$ for any $\alpha \in \mathbb{R}$.

- (c) $(x-1)^2(x-2)$ if $\alpha=0$ and (x-1)(x-2) otherwise.
- (d) $(x-1)^2(x-2)$ if $\alpha \neq 0$ and (x-1)(x-2) otherwise.
- Q 101) If $a = \begin{bmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{bmatrix}$ then which of the following statements is true
 - (i) x-1 is the minimal polynomial of A if and only if $\alpha = \beta = \gamma = 0$.
 - (ii) $(x-1)^2$ is the minimal polynomial of A if and only if $\alpha = \gamma = 0$ and $\beta \neq 0$.
 - (iii) $(x-1)^3$ is the minimal polynomial of A if and only if β and exactly one of the α, γ are 0.
 - (iv) $(x-1)^3$ is the minimal polynomial of A if and only if exactly two of the α, β, γ are 0.
 - (a) i, ii, iii are true.

(b) only i is true.

(c) i and iii are true.

- (d) i, ii, iv are true.
- Q 102) Let $A = \begin{bmatrix} 2 & 0 & 0 \\ a & 2 & 0 \\ b & c & -1 \end{bmatrix}$. Then (t+1)(t-2) is the minimal polynomial of A if and

only if

- (a) b = c = 0 (b) a = 0
- (c) $b \neq 0$
- (d) a = b = c.
- Q 103) If N_1, N_2 are real nilpotent matrices , then N_1, N_2 are similar if and only if
 - (a) they have same characteristic polynomials. (b) They have same minimal polynomials.
 - (c) Either N_1 or N_2 is zero.

(d) $N_1 = \pm N_2$

Diagonalization of a matrix and Orthogonal Diagonalization and Quadratic Form

1. Let
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -2 \end{pmatrix}$$
. Then,

- (a) A and A^{100} are both diagonalizable. (b) A is diagonalizable but A^{100} is not.
- (c) Neither A nor A^{100} is diagonalizable. (d) None of the above.

2. Let
$$A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix}$$
 and $B = A^{100} + A^{20} + I$. Then,

- (a) A, B are not diagonalizable. (b) A is diagonalizable, but B is not diagonalizable.
- (c) AB is diagonalizable (d) None of the above.
- 3. If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that T(61,23) = (189,93) and T(67,47) = (195,117). Then
 - (a) T is diagonalizable with distinct eigenvalues.
- (b) T is not diagonalizable.
- (c) T does not have distinct eigenvalues, but is diagonalizable. (d) None of the above.
- 4. Which of the following matrices is not diagonalizable

(a)
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

- 5. Let A be a $n \times n$ real orthogonal matrix. Then
 - (a) A has n real eigen values and each eigen value is ± 1 . (b) A is diagonalizable
 - (c) A may not have any real eigen value.

(d) (b) $A^2 = I$

6. Let
$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \end{bmatrix}$$
, then A is diagonalizable if

[0 0 c 0]
(a)
$$a = b, c = 1$$
 (b) $a = 1 = b = c$ (c) $a = b = c = 0$ (d) $a, b, c > 0$

7. Let
$$A = \begin{bmatrix} 0 & a \\ 0 & -a \end{bmatrix}$$

- (a) A is diagonalizable but not orthogonally diagonalizable.
- (b) A is not diagonalizable for any $a \in \mathbb{R}$.
- (c) A is orthogonally diagonalizable if and only if a=1(d) None of these.
- 8. If A is a 4×4 matrix having all diagonal entries 0, then
 - (a) 0 is an eigenvalue of A. (b) $A^4 = 0$ (c) A is not diagonalizable. (d) None of these.
- 9. Let A be an $n \times n$ non-zero nilpotent matrix over \mathbb{R} . Then
 - (a) A is diagonalizable.
- (b) A is diagonalizable if n is odd.
 - (c) A is not diagonalizable. (d) None of the above.
- 10. Let $A = \begin{pmatrix} \alpha & -3 \\ 3 & 0 \end{pmatrix}$, $\alpha \in \mathbb{R}$ is a parameter. Then
 - (a) A is not diagonalizable for any $\alpha \in \mathbb{R}$. (b) A is diagonalizable $\forall \alpha \mathbb{R}$.
 - (c) A is not diagonalizable if $-6 \le \alpha \le 6$. (d) A is diagonalizable if $-6 < \alpha < 6$.

- 11. Let A and B be $n \times n$ matrices over \mathbb{R} such that AB = A B. If B is a diagonalizable matrix with only one eigenvalue 2, then,
 - (a) 2 is also an eigenvalue of A. (b) A is diagonalizable and -2 is the only eigenvalue of A.
 - (c) A may not be diagonalizable. (d) None of these.
- 12. The matrix $A = \begin{pmatrix} 1 & 7 & 5 \\ 0 & 4 & 7 \\ 0 & 0 & 2 \end{pmatrix}$
 - (a) Not diagonizable. (b) is similar to $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$
 - (c) is similar to $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. (d) None of the above.
- 13. Let A, B, C be 3×3 non-diagonal matrices over \mathbb{R} such that $A^2 = A, B^2 = -I, (C-3I)^2 = 0$. Then
 - (a) A, B, C are all diagonalizable over \mathbb{R} . (b) A, C are all diagonalizable over R.
 - (c) Only A is diagonalizable over \mathbb{R} .
- (d) None of the above
- 14. Let $A \in M_3(\mathbb{R})$ such that AB = BA for all $B \in M_3(\mathbb{R})$. Then
 - (a) A has distinct eigenvalues and is diagonalizable.
 - (b) A is not diagonalizable.
 - (c) A does not have distinct eigenvalues but is diagonalizable.
 - (d) None of the above.
- 15. If $A, B, C, D \in M_2(\mathbb{R})$ such that A, B, C, D are non-zero and not diagonal. If $A^2 = I, B^2 = B, C^2 = 0, C \neq 0$ and every eigenvalue of D is 2, then
 - (a) A, B, C, D are all diagonalizable. (b) B, C, D are diagonalizable.
 - (c) A, B are diagonalizable.
- (d) Only D is diagonalizable.
- 16. If $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ then
 - (a) Both A,B are diagonalizable, A is also orthogonally diagonalizable.
 - (b) Both A,B are orthogonally diagonalizable.
 - (c) Both A,B are diagonalizable, B is also orthogonally diagonalizable.
 - (d) Both A,B are diagonalizable, but both A,B are not orthogonally diagonalizable.
- 17. If v = [1, 0, 1] is a row vector then,
 - (a) $v^t v$ is not orthogonally diagonalizable.
 - (b) vv^tv is orthogonally diagonalizable.
 - (c) $v^t v$ is not diagonalizable.
 - (d) None of the above.

- 18. Let A be an $m \times n$ matrix over \mathbb{R} . Then
 - (a) AA^t is not orthogonally diagonalizable.
 - (b) $I_m + AA^t$ is not orthogonally diagonalizable.
 - (c) AA^t and A^tA are orthogonally diagonalizable. (d) None of the above.
- 19. Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. If $P^t A P = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$, then $P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

(a)
$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$
 (b) $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ (c) $\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ (d) None of the above.

- 20. Let $A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$, $a \in \mathbb{R}$. Then
 - (a) A is not diagonalizable for any $a \in \mathbb{R}$.
 - (b) A is diagonalizable but not orthogonally diagonalizable.
 - (c) A is orthogonally diagonalizable if and only if a = 0. (d) None of the above.
- 21. The equation $2x^2 4xy y^2 4x + 10y 13 = 0$ after rotation and translation can be reduced to
 - (b) a hyperbola (c) a parabola (d) a pair of straight lines. (a) an ellipse
- 22. The conic $x^2 + 2xy + y^2 = 1$ reduces to the standard form after rotation through a

(a)
$$\frac{\pi}{4}$$
 (b) $\frac{\pi}{3}$ (c) $\frac{2\pi}{3}$ (d) $\frac{\pi}{6}$

- 23. The quadratic form $Q(x) = x_1^2 + 4x_1x_2 + x_2^2$ has (a) rank = 1, signature = 1. (b) rank = 2, signature = 0.
 - (c) rank = 2, signature = 2. (d) None of the above.
- 24. Let A be a 4×4 real symmetric matrix. Then there exists a 4×4 real symmetric matrix B such that

(a)
$$B^2 = A$$
 (b) $B^3 = A$ (c) $B^4 = A$ (d) None of these

25. The matrix $\begin{pmatrix} 1 & 2 \\ 2 & k \end{pmatrix}$ is positive definite if

(a)
$$k > 4$$
 (b) $-2 < k < 2$ (c) $|k| > 2$ (d) None of these.

- 26. $ax^2 + bxy + cy^2 = d$ where a, b, c are not all zero and d > 0 represents
 - (a) ellipse if $b^2 4ac > 0$ and hyperbola if $b^2 4ac < 0$.
 - (b) ellipse if $b^2 4ac < 0$ and hyperbola if $b^2 4ac > 0$.
 - (c) is a circle if b=0 and a=c else it is a hyperbola.
 - (d) None of these.
- 27. The conic $x^2 + 10x + 7y = -32$ represents
 - (a) a hyperbola (b) an ellipse. (c) a parabola (d) a pair of straight lines.
- 28. For the quadratic from $Q(x) = 2x_1^2 + 2x_2^2 2x_1x_2$
 - (a) rank = 2, signature = 1

(b) rank = 1, signature = 1

(c) rank = 2, signature = 0

(d) rank = 2, signature = 2

- 29. For the quadratic from $Q(x) = -3x_1^2 + 5x_2^2 + 2x_1x_2$,
 - (a) rank = 2, signature = 0

(b) rank = 2, signature = 1

(c) rank = 2, signature = 2

- (d) rank = 1, signature = 1
- 30. The symmetric matrix associated to the quadratic from $5(x_1 x_2)^2$ is,
 - (a) positive definite (b) positive semi definite (b) indefinite (d) negative definite.
- 31. The quadratic form $Q(x) = 2x_1^2 4x_1x_2 x_2^2$ after rotation can be reduced to standard form

(a)
$$3y_1^2 - 2y_2^2$$
 or $2y_1^2 + 3y_2^2$ (b) $3y_1^2 + 2y_2^2$ (c) $-3y_1^2 + 2y_2^2$ (d) $2y_1^2 - 4y_2^2$

- 32. The equation $x^2 + y^2 + z^2 2x + 4y 6z = 11$ represents
 - (a) None of the below
- (b) a hyperboloid of one sheet
- (c) a hyperboloid of two sheet (d) a sphere.
- 33. The conic $3x^2 4xy = 2$ represents
 - (a) an ellipse (b) a hyperbola (c) a parabola (d) a pair of straight lines.

34. Let
$$Q(X) = X^t A X$$
, where $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$, $X = (x_1, x_2, x_3, x_4)^t$. Then by

orthogonal change of variable, Q(X) can be reduced to

- (a) $y_1y_2 + y_3^2$ (b) $y_1y_2 + y_2^2 + y_3^2$ (c) $y_1^2 + y_2^2 + y_3^2 y_4^2$ (d) $y_2^2 + y_2^2 y_3y_4$
- 35. If $A_{n\times n}$ be real matrix then which of the following is true-
 - (a) A has at least one eigen value. (b) $\forall X, Y \in \mathbb{R}, \langle AX, AY \rangle > 0$
- - (c) Each eigen value of $A^t A \geq 0$
- (d) $A^t A$ has n eigen values.