Objective Questions TYBSC Maths I Sem V

1. Reversing the order of integration of $\int_0^1 \int_{x^2}^x f(x,y) dy dx$ we get

(a) $\int_{0}^{1} \int_{-v}^{\sqrt{y}} f(x, y) dx dy$ (b) $\int_{0}^{1} \int_{v}^{\sqrt{y}} f(x, y) dx dy$ (c) $\int_{0}^{1} \int_{v}^{-\sqrt{y}} f(x, y) dx dy$ (d) None of these

2. Reversing the order of integration of $\int_0^1 \int_{y}^{\sqrt{x}} f(x,y) dy dx$ we get

(a) $\int_0^1 \int_{y^2}^y f(x, y) dx dy$ (b) $\int_0^1 \int_{-y^2}^y f(x, y) dx dy$ (c) $\int_0^2 \int_{y^2}^y f(x, y) dx dy$ (d) None of these

3. Reversing the order of integration of $\int_0^1 \int_0^x f(x,y) dy dx$ we get

(a) $\int_0^1 \int_{-y}^y f(x,y) dx dy$ (b) $\int_0^1 \int_y^1 f(x,y) dx dy$ (c) $\int_0^1 \int_0^y f(x,y) dx dy$ (d) None of these

4. Reversing the order of integration of $\int_0^1 \int_{\sqrt{x}}^{x^2} f(x, y) dy dx$ we get

(a) $\int_0^1 \int_{v^2}^{\sqrt{y}} f(x, y) dx dy$ (b) $\int_0^1 \int_0^{y^2} f(x, y) dx dy$ (c) $\int_0^1 \int_y^{y^2} f(x, y) dx dy$ (d) None of these

5. Reversing the order of integration of $\int_0^1 \int_{a^x}^e f(x,y) dy dx$ we get

(a) $\int_0^1 \int_1^{logy} f(x,y) dx dy$ (b) $\int_0^1 \int_y^{logy} f(x,y) dx dy$ (c) $\int_1^e \int_0^{logy} f(x,y) dx dy$ (d) None of these

6. Reversing the order of integration of $\int_0^1 \int_0^{1-x} f(x,y) dy dx$ we get

(a) $\int_0^1 \int_{y-1}^1 f(x,y) dx dy$ (b) $\int_0^1 \int_0^{1-y} f(x,y) dx dy$ (c) $\int_0^1 \int_{y-1}^{y+1} f(x,y) dx dy$ (d) None of these

7. Reversing the order of integration of $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f(x,y) dy dx$ we get

(a) $\int_0^1 \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx dy$ (b) $\int_{-1}^1 \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx dy$ (c) $\int_{-1}^1 \int_0^{\sqrt{1-y^2}} f(x,y) dx dy$

8. Reversing the order of integration of $\int_1^e \int_0^{\log x} f(x,y) dy dx$ we get

(a) $\int_0^1 \int_{e^y}^e f(x, y) dx dy$ (b) $\int_0^1 \int_0^2 f(x, y) dx dy$ (c) $\int_0^1 \int_0^{\log y} f(x, y) dx dy$ (d) None of these

9. Reversing the order of integration of $\int_{0}^{1/\sqrt{2}} \int_{x}^{\sqrt{1-x^2}} f(x,y) dy dx$ we get

(a) $\int_0^1 \int_y^e f(x,y) dx dy$ (b) $\int_0^1 \int_0^y f(x,y) dx dy$ (c) $\int_0^1 \int_y^{y^2} f(x,y) dx dy$ (d) None of these

10. Reversing the order of integration of $\int_0^1 \int_0^2 f(x,y) dy dx$ we get

(a) $\int_0^1 \int_1^2 f(x,y) dx dy$ (b) $\int_0^2 \int_0^1 f(x,y) dx dy$ (c) $\int_0^1 \int_0^2 f(x,y) dx dy$ (d) None of these

11. Reversing the order of integration of $\int_0^1 \int_0^{\sqrt{1-x^2}} f(x,y) dy dx$ we get

(a) $\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} f(x,y) dx dy$ (b) $\int_{0}^{1} \int_{1}^{\sqrt{1-y^2}} f(x,y) dx dy$ (c) $\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} f(x,y) dx dy$

12. Reversing the order of integration of $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} f(x,y) dy dx$ we get

(a) $\int_0^1 \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx dy$ (b) $\int_{-1}^1 \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx dy$ (c) $\int_0^1 \int_0^{\sqrt{1-y^2}} f(x,y) dx dy$ (d) None of

13. Reversing the order of integration of $\int_0^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f(x,y) dy dx$ we get

27.
$$\int_0^1 \int_0^x x dy dx = ?$$

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d) None of these

28.
$$\int_{1}^{e} \int_{0}^{\log x} dy dx = ?$$

29.
$$\int_0^1 \int_0^{1-y} dx dy = ?$$

(a)
$$\frac{1}{3}$$
 (b) $\frac{1}{5}$ (c) $\frac{1}{2}$ (d) None of these

$$30. \int_0^1 \int_y^1 x dx dy = ?$$

(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{12}$ (c) $\frac{1}{3}$ (d) None of these

31.
$$\int_0^1 \int_{e^y}^e dx dy = ?$$

$$32. \int_0^1 \int_{x^2}^x x dy dx = ?$$

(a)
$$\frac{1}{12}$$
 (b) $\frac{2}{7}$ (c) $\frac{1}{8}$ (d) None of these

33.
$$\int_0^1 \int_{\sqrt{x}}^{x^2} dy dx = ?$$

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{3}$ (c) $\frac{1}{8}$ (d) None of these

34.
$$\int_0^1 \int_0^4 \int_0^2 x \, dy \, dx \, dz = ?$$

35.
$$\int_0^1 \int_{y^2}^{\sqrt{y}} f(x, y) dx dy = ?$$

(a)
$$\frac{1}{3}$$
 (b) $\frac{1}{5}$ (c) $\frac{1}{4}$ (d) None of these

36.
$$\int_0^1 \int_1^2 \int_0^2 x \, dx \, dy \, dz = ?$$

37.
$$\int_0^1 \int_0^{1-x} dy dx = ?$$

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d) None of these

$$38. \quad \int_0^1 \int_y^{\sqrt{y}} x dx dy = ?$$

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{6}$ (c) $\frac{1}{12}$ (d) None of these

39.
$$\int_1^4 \int_0^5 \int_0^1 z^2 dz dx dy = ?$$

$$40. \int_0^1 \int_0^4 \int_0^x 1 \, dy \, dx \, dz = ?$$

41. The area enclosed by the lines
$$y=x$$
, $x=2$ and x axis is

42. The area enclosed by the line y=x, the circle $x^2+y^2=1$ and the y axis in the first quadrant is

(a)
$$\frac{\pi}{16}$$
 (b) $\frac{\pi}{8}$ (c) $\frac{\pi}{4}$ (d) None of these

43. The area enclosed by the parabolas $y = x^2$ and $x = y^2$ is

	(a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d) None of these
44.	The area enclosed by the line $x+y=1$ and the coordinate axis is
	(a) $\frac{1}{4}$ (b) $\frac{1}{6}$ (c) $\frac{1}{2}$ (d) None of these
45.	The area enclosed by the line $x=1,y=\log x$ and the x axis is
	(a) 1 (b) e (c) e+1 (d) None of these
46.	The area enclosed by the lines $x=2$ $y=1$ and the coordinate axis is
	(a) 1 (b) 2 (c) 3 (d) None of these
47.	The area enclosed by the line $y = e$, the curve $y = e^x$ and the y axis is
10	(a) 1 (b) 2 (c) 3 (d) None of these The area analoged by the line year and the perchalage? — wis
40.	The area enclosed by the line y=x and the parabola $y^2 = x$ is
40	(a) $\frac{1}{4}$ (b) $\frac{1}{5}$ (c) $\frac{1}{6}$ (d) None of these
49.	The area enclosed by the line y=x and the parabola $x^2 = y$ is
	(a) $\frac{1}{2}$ (b) $\frac{1}{4}$ (c) $\frac{1}{6}$ (d) None of these
50.	The area enclosed by the line y=x, the circle $x^2 + y^2 = 1$ and the x axis in the first quadrant is
	(a) $\frac{\pi}{16}$ (b) $\frac{\pi}{8}$ (c) $\frac{\pi}{4}$ (d) None of these
51.	The area enclosed by the lines $y=x$, $y=2$ and the y axis is
	(a) 1 (b) 2 (c) 4 (d) None of these
52.	The double integral $\iint_S f(x,y) dxdy$ where S is the region enclosed by $x^2 + y^2 = 1, y = 0$
	x, and the x axis where $f(x,y) = x$, expressed as an iterated integral in polar coordinates is
	(a) $\int_0^{\pi} \int_0^1 r^2 \sin \theta dr d\theta$ (b) $\int_0^{\pi} \int_0^1 r^2 \sin \theta dr d\theta$ (c) $\int_0^{\frac{\pi}{4}} \int_0^1 r^2 \cos \theta dr d\theta$ (d) none of these
53.	The double integral $\iint_S f(x,y) dxdy$ where S is the region enclosed by $x^2 + y^2 = 1, y = 1$
	x, and the y axis where $f(x,y) = x$ where, expressed as an iterated integral in polar coordinates is
	(a) $\int_{0}^{\pi} \int_{0}^{1} r^{2} \sin\theta dr d\theta$ (b) $\int_{0}^{\frac{\pi}{4}} \int_{0}^{1} r^{2} \sin\theta dr d\theta$ (c) $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{1} r^{2} \sin\theta dr d\theta$ (d) none of these
	(a) $\int_0^{\infty} \int_0^{\pi} $
54.	The double integral $\iint_S f(x,y) dxdy$ where S is the region in the first quadrant enclosed by $x^2 + y^2 + $
	$y^2 = 1$, and by the coordinate axis where $f(x, y) = 2$, expressed as an iterated integral in polar
	coordinates is
	(a) $\int_0^{\pi} \int_0^1 2r dr d\theta$ (b) $\int_0^{\frac{\pi}{4}} \int_0^1 r dr d\theta$ (c) $\int_0^{\frac{\pi}{2}} \int_0^1 2r dr d\theta$ (d) none of these
55.	The double integral $\iint_S f(x,y) dxdy$ where S is the region enclosed by $x^2 + y^2 =$
	1, the y axis on the right side of the y axis where $f(x,y) = 1$, expressed as an iterated integral in polar coordinates is
	(a) $\int_0^{\pi} \int_0^1 r dr d\theta$ (b) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^1 r dr d\theta$ (c) $\int_0^{\frac{\pi}{2}} \int_0^1 r dr d\theta$ (d) none of these
56.	The double integral $\iint_S f(x,y) dxdy$ where S is the region enclosed by $x^2 + y^2 =$
	1, the x axis above the x axis where $f(x,y) = x$, expressed as an iterated integral in polar coordinates is
	(a) $\int_0^\pi \int_0^1 r^2 \cos\theta dr d\theta$ (b) $\int_0^{\frac{\pi}{4}} \int_0^1 r^2 \sin\theta dr d\theta$ (c) $\int_0^{\frac{\pi}{2}} \int_0^1 r^2 \sin\theta dr d\theta$ (d) none of these

- 57. The double integral $\int \int_S f(x,y) dxdy$ where *S* is the region enclosed by $x^2 + y^2 = 1$, where f(x,y) = 1, expressed as an iterated integral in polar coordinates is
 - (a) $\int_0^{2\pi} \int_0^1 r \, dr d\theta$ (b) $\int_0^{\frac{\pi}{4}} \int_0^1 r \, dr d\theta$ (c) $\int_0^{\frac{\pi}{2}} \int_0^1 r \, dr d\theta$ (d) none of these
- 58. The double integral $\iint_S f(x,y) dxdy$ where S is the region enclosed between the circles $x^2 + y^2 = 1$, $x^2 + y^2 = 4$ where f(x,y) = 1, expressed as an iterated integral in polar coordinates is
 - (a) $\int_0^{2\pi} \int_1^2 r \, dr d\theta$ (b) $\int_0^{\frac{\pi}{4}} \int_1^2 r \, dr d\theta$ (c) $\int_0^{\frac{\pi}{2}} \int_1^2 r \, dr d\theta$ (d) none of these
- 59. The double integral $\int_S f(x,y) dxdy$ where S is the region enclosed between the circles $x^2 + y^2 = 1$, $x^2 + y^2 = 4$ that lying above the x axis where f(x,y) = 1, expressed as an iterated integral in polar coordinates is
 - (a) $\int_0^{\pi} \int_1^2 r \, dr d\theta$ (b) $\int_0^{\frac{\pi}{4}} \int_1^2 r \, dr d\theta$ (c) $\int_0^{\frac{\pi}{2}} \int_1^2 r \, dr d\theta$ (d) none of these
- 60. The double integral $\iint_S f(x,y) dxdy$ where S is the region enclosed by $x^2 = y$ and y = x, where f(x,y) = 2, expressed as an iterated integral in polar coordinates is
 - (a) $\int_0^{\pi} \int_0^{sec\theta} 2r \, dr d\theta$ (b) $\int_0^{\frac{\pi}{4}} \int_0^{cosec\theta cot\theta} 2r \, dr d\theta$ (c) $\int_0^{\frac{\pi}{2}} \int_0^{cot\theta} 2r \, dr d\theta$ (d) none of these
- 61. The double integral $\iint_S f(x,y) dxdy$ where S is the region enclosed between thr circles $x^2 + y^2 = 1$, $x^2 + y^2 = 9$ where f(x,y) = 2, expressed as an iterated integral in polar coordinates is
 - (a) $\int_0^{2\pi} \int_1^3 2r \, dr d\theta$ (b) $\int_0^{\frac{\pi}{4}} \int_0^3 2r \, dr d\theta$ (c) $\int_0^{\frac{\pi}{2}} \int_1^3 2r \, dr d\theta$ (d) none of these
- 62. The double integral $\int \int_S f(x,y) dxdy$ where *S* is the region enclosed by $x^2 + y^2 = 1$, where f(x,y) = 2, expressed as an iterated integral in polar coordinates is
 - (a) $\int_0^{\pi} \int_0^1 2r \, dr d\theta$ (b) $\int_0^{2\pi} \int_0^1 2r \, dr d\theta$ (c) $\int_0^{\frac{\pi}{2}} \int_0^1 r \, dr d\theta$ (d) none of these
- 63. The double integral $\int \int_S f(x,y) \, dx \, dy$ where S is the region enclosed by $x^2 + y^2 = 1$, the x axis above the x axiswhere f(x,y) = 3, expressed as an iterated integral in polar coordinates is (a) $\int_0^\pi \int_0^1 3r \, dr \, d\theta$ (b) $\int_0^\frac{\pi}{4} \int_0^1 3r \, dr \, d\theta$ (c) $\int_0^\frac{\pi}{2} \int_0^1 2r \, dr \, d\theta$ (d) none of these
- 64. The double integral $\iint_S f(x,y) dxdy$ where S is the region enclosed by $x^2 + y^2 = 1$, and the y axis to the right of y axis where f(x,y) = 5, expressed as an iterated integral in polar coordinates is
 - (a) $\int_0^{\pi} \int_0^1 5r \, dr d\theta$ (b) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^1 5r \, dr d\theta$ (c) $\int_0^{\frac{\pi}{2}} \int_0^1 5r \, dr d\theta$ (d) none of these
- 65. The double integral $\iint_S f(x,y) dxdy$ where S is the region enclosed in the first quadrant by $x^2 + y^2 = 1$, and by the coordinate axis where f(x,y) = 1, expressed as an iterated integral in polar coordinates is
 - (a) $\int_0^{\pi} \int_0^1 r \, dr d\theta$ (b) $\int_0^{\frac{\pi}{4}} \int_0^1 r \, dr d\theta$ (c) $\int_0^{\frac{\pi}{2}} \int_0^1 r \, dr d\theta$ (d) none of these
- 66. The double integral $\iint_S f(x,y) dxdy$ where *S* is the region enclosed by $x^2 + y^2 = 1, y = x$, and the *y* axis where f(x,y) = y, expressed as an iterated integral in polar coordinates is
 - (a) $\int_0^{\pi} \int_0^1 r^2 \cos\theta dr d\theta$ (b) $\int_0^{\frac{\pi}{4}} \int_0^1 r^2 \cos\theta dr d\theta$ (c) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_0^1 r^2 \cos\theta dr d\theta$ (d) none of these

	(a) $\alpha(t) = (t^2, t)$ where $t \in [0, 1]$	(b) $\alpha(t) = (t, t^2)$ where $t \in [0, 1]$					
	(c) $\alpha(t) = (t, t)$ where $t \in [0, 1]$	(d) none of these					
80.	O. A parametric equation of the curve $x^2=y$ joining $(0, 0)$ to $(1, 1)$ is						
	(a) $\alpha(t) = (t^2, t)$ where $t \in [0, 1]$	(b) $\alpha(t) = (t, t^2)$ where $t \in [0, 1]$					
	(c) $\alpha(t) = (t, t)$ where $t \in [0, 1]$	(d) none of these					
81.	A parametric equation of the curve $x^2 + y^2$	$z^2 = 1$ joining $(1, 0)$ to $(0, 1)$ in the counter-clockwise path is					
		(b) $\alpha(t) = (\cos t, \sin t)$ where $t \in [0, \frac{\pi}{4}]$					
	(c) $\alpha(t) = (t, t)$ where $t \in [0, 1]$	(d) none of these					
82.	A parametric equation of the curve $x^2 + y^2$	$t^2 = 1$ joining $(1, 0)$ to $(0, 1)$ in the counter-clockwise path is					
	(a) $\alpha(t) = (t, t)$ where $t \in [0, 1]$	(b) $\alpha(t) = (\sin t, \cos t)$ where $t \in [0, \pi]$					
	(c) $\alpha(t) = (\cos t, \sin t)$ where $t \in [0, \pi]$	(d) none of these					
83.	A parametric equation of the curve $x^2 + y^2$	$t^2 = 1$ joining (0, -1) to (0, 1) in the counter-clockwise path is					
	(a) $\alpha(t) = (\cos t, \sin t)$ where $t \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$	(b) $\alpha(t) = (\sin t, \cos t)$ where $t \in [0, \frac{\pi}{2}]$					
	(c) $\alpha(t) = (t, t)$ where $t \in [0, 1]$	(d) none of these					
84.	The work done by $F(x, y,z) = \bar{\iota} + \bar{f} + \bar{k}$ when a	a particle is moved along the straight- line segment from					
	(0, 0, 0) to $(1, 1, 0)$ is						
	(a) 1 (b) 2 (c) 3	(d) None of these					
85.	The work done by $F(x, y.z) = \bar{i} + \bar{i} + \bar{k}$ when a	a particle is moved along the straight- line segment from					
	(0, 0, 0) to $(1, 2, 0)$ is	. For the second					
	(a) 1 (b) 2 (c) 3	(d) None of these					
86.		a particle is moved along the straight- line segment from					
	(0,0,0) to $(0,1,0)$ is	(IN) Cal					
	(a) 1 (b) 2 (c) 3	(d) None of these					
87.	The work done by $F(x, y,z) = \bar{\iota} + \bar{j} + \bar{k}$ when a	particle is moved along the straight- line segment from					
	(0, 0, 0) to $(1, 0, 0)$ is						
	(a) 2 (b) 3 (c) 4 (d) None of these						
88.		particle is moved along the straight- line segment from					
	(0, 0, 0) to (1, 2, 1) is (a) 1 (b) 2 (c) 3 (d) None of the	S.A.					
89.		particle is moved along the straight- line segment from					
	(0, 0, 0) to (3, 1, 1) is						
	(a) 1 (b) 2 (c) 3 (d) None of t	hese					
90.	The line integral $\int_{C} f d\alpha$ where $f(x, y) =$	x and $\alpha(t)=(\cos t, \sin t)$ $t \in [-\pi/2, \pi/2]$ is					
	(a) 0 (b) 1 (c) 2 (d) M	None of these					
91.	The line integral $\int_C f d\alpha$ where $f(x, y) = y$	y and $\alpha(t) = (\cos t, \sin t)$ $t \in [-\pi/2, \pi/2]$ is					
	(a) 0 (b) 1 (c) 2 (d) M	None of these					

92. The line integral $\int_C f d\alpha$ where $f(x, y) = y$ and $\alpha(t) = (\cos t, \sin t)$ $t \in [0, \pi]$ is
(a) 0 (b) 1 (c) 2 (d) None of these
93. The line integral $\int_C f d\alpha$ where $f(x, y) = x$ and $\alpha(t) = (\cos t, \sin t)$ $t \in [0, \pi]$ is
(a) 0 (b) 1 (c) 2 (d) None of these
94. The line integral $\int_C f d\alpha$ where $f(x, y) = y$ and $\alpha(t) = (\cos t, \sin t)$ $t \in [0, \pi/2]$ is
(a) 0 (b) 1 (c) 2 (d) None of these
95. The line integral $\int_C f d\alpha$ where $f(x, y) = x$ and $\alpha(t) = (\cos t, \sin t)$ $t \in [0, \pi/2]$ is
(a) 0 (b) 1 (c) 2 (d) None of these
96. Assuming the Green's theorem conditions are satisfied ,which of the following line integrals gives area enclosed by the simple closed curve C.
(a) $\oint_C \frac{-y}{2} dx + \frac{x}{2} dy$ (b) $\oint_C x dx + y dy$ (c) $\oint_C y dx + x dy$ (d) none of these
97. Assuming the Green's theorem conditions are satisfied ,which of the following line integrals gives area enclosed by the simple closed curve C.
(a) $\oint_C 5xdx + 4ydy$ (b) $\oint_C -4xdx + 5ydy$ (c) $\oint_C -4ydx + 5xdy$ (d) none of these
98. If $F(x, y) = (y, x)$ is conservative vector field then the $\int_C F d\alpha$ along any smooth path α joining (2, 1) to
(3, 2) is
(a) 1 (b) 4 (c) 14 (d) none of these
99. If $F(x, y) = (2xy, x^2)$ is conservative vector field then the $\int_C F d\alpha$ along any smooth path α joining (2, 1) to
(3, 2) is
(a) 1 (b) 4 (c) 14 (d) none of these
100. If $F(x, y) = (1, 0)$ is conservative vector field then the $\int_C F d\alpha$ along any smooth path α joining $(2, 1)$ to
(3, 2) is
(a) 1 (b) 4 (c) 14 (d) none of these
101. If $F(x, y) = (0, 1)$ is conservative vector field then the $\int_C F d\alpha$ along any smooth path α joining $(2, 1)$ to
(3, 2) is (a) 1 (b) 4 (c) 14 (d) none of these
(a) 1 (b) 4 (c) 14 (d) none of these 102. Assuming the Green's theorem conditions are satisfied ,which of the following line integrals gives area
enclosed by the simple closed curve C.
(a) $\oint_C \frac{x}{2} dy$ (b) $\oint_C -y dy$ (c) $\oint_C -y dx$ (d) none of these
103. Assuming the Green's theorem conditions are satisfied, which of the following line integrals gives area
enclosed by the simple closed curve C.
(a) $\oint_C x^2 dx + y^2 dy$ (b) $\oint_C (y^2 + x) dx + (x + 2xy) dy$ (c) $\oint_C y dx + (x + y^2) dy$ (d) none of these
104. Assuming the Green's theorem is satisfying
105. An expression for $\int_0^1 \int_{-\sqrt{x}}^{\sqrt{x}} f(x,y) dy dx$ in which the order of integration is reversed is
(a) $\int_{-1}^{1} \int_{-y^2}^{y^2} f(x, y) dx dy$. (b) $\int_{-1}^{1} \int_{y^2}^{1} f(x, y) dx dy$.

(c) a sum of two integrals.	(d) None of these.		
106. $I = \int_0^1 \int_{1-x}^{1+x} xy \ dy dx$. Then <i>I</i> is			
(a) Undefined (b) $\int_0^1 \int_0^y xy \ dxdy$.	(c) 0 (d)	None of these.	
107. $I = \int_0^1 \int_{x^2}^x xf(y) dydx$ where f is continuous	function defined on	[0, 1]. Then <i>I</i> is	
(a) $\frac{1}{2} \int_0^1 (y - y^2) f(y) dy$	(b) independent of		
(c) $\frac{1}{2} \int_0^1 (y^2 - y) f(y) dy$	(d) $f(x)$		
108. The value of the double integral $\int_{-1}^{1} \int_{0}^{1} e^{x^{2}} \sin y$	dxdy is equal to		
(a) $2\cos 1 \int_0^1 e^{x^2} dx$. (b) $-2\cos 1 \int_0^1 e^{x^2} dx$	(c) 0	(d) does not exist.	
109. The double integral $\int_0^1 \int_0^x x \ dy dx$ reduces to			
(a) $\frac{1}{2} \int_0^1 (1 - y) dy$ (b) $\int_0^1 \int_0^y x \ dx dy$	(c) $\int_0^1 \int_y^1 x \ dx dy$	$(d) \frac{1}{2} \int_0^1 x \ dx$	
110. If $f(x,y) = k$, k constant and $R = [a,b] \times [c,d]$	then $\iint_R k dA$ eq	uals	
(a) $k(b-a)(d-c)$ (b) $k(c-a)(d-b)$ (c) $k(c-a)(d-b)$	c(b-c)(d-a)	(d) data insufficient	
111. Let $D = \{(x, y): x^2 + y^2 \le r\}$ and $f(x, y) = x^2$	$x^2 + y$. Then $\iint_D f dx$	dA lies in between	
(a) -16π and 4π (b) -2 and 2 (c) -2π		(d) -4π and 8π	
112. The iterated integral $\int_0^2 \int_{x^2}^{2x} (x^2 + y^2) dy dx$ rej	presents		
(a) The area of the region in the <i>xy</i> -plane bounded by the first that the first			
(b) Volume of the solid that lies under the paraboloid z is bounded by the line $x = y/2$ and $x = \sqrt{y}$	$= x^2 + y^2$ and above	we the region in the xy -plane	
bounded by the line $x = y/2$ and $x = \sqrt{y}$ (c) Volume of the solid the lies under the paraboloid $z = y/2$	$= x^2 + v^2$ and above	re the region in the xv-plane	
bounded by $y^2 = x$ and $x = \sqrt{y}$. , ,		
(d) None of the above.			
113. The volume of the region bounded by $z = x + y$			
(a) 36 cubic units (b) 30 cubic units 114. The volume of the solid given by $x^2 + y^2 \le 1$	· · · · · · · · · · · · · · · · · · ·		
(a) π (b) π^2 (c) 1	X	(d) None of these.	
115. Let <i>V</i> be the volume of the solid that lies under			
region in the xy-plane bounded by the line $y = 2x$ a			
Let $A = \int_0^2 \int_{x^2}^{2x} (x^2 + y^2) dy dx$, $B = \int_0^x \int_0^x dx dx$	$\int_{y/2}^{\sqrt{y}} \int_0^{x^2 + y^2} dz dx dx$	ly. Then	
(a) $V = A$ but $V \neq B$ (b) $V = A = B$ (C) $V \neq$	A but $V = B$	(d) $V \neq A, V \neq B$	
116. $\iint_{R} y \sin(xy) dx dy \text{ where } R = [1,2] \times [0,\pi] \text{ eq}$	uals		
(a) π (b) 2π (c)		1	
117. If $f: [0,1] \to \mathbb{R}$ is continuous then $\iint_{S} f(y)e^{x} dx$	$cdy, S = [0,1] \times [0,1]$	0,1] equals	
(a) $(e-1) \int_0^1 f(y) dy$ (b) $e \int_0^1 f(y) dy$ (c) $\left(\frac{e^2}{2} - e^2\right) dy$	$\int_0^1 f(y) dy $ (d) N	lone of these.	
118. $\iint_{S} e^{x/y} dx dy \text{ where } S = \{(x, y) \in \mathbb{R}^{2} : 1 \leq y\}$	$\leq 2, y \leq x \leq y^3 \} \epsilon$	equals	

(a) $\frac{e^2}{2} - \frac{e}{2}$ (b) $\frac{e}{2}$	$\frac{4}{2} - \frac{e^2}{2}$	(c) $\frac{e^2-1}{2}$	d) None of these.
119. $\iint_{S} e^{\sin x \cos y} dx dy \text{ when}$	$re S = \{(x, y) \in \mathbb{I}\}$	$\mathbb{R}^2: x^2 + y^2 \le 4\} \text{ lie}$	es between
(a) $4\pi e^2$ and $4\pi e^3$ (b) e^3	e^{π} and $e^{2\pi}$	(c) $\frac{4\pi}{e}$ and $4\pi e$ ((d) None of these.
120. f is continuous on $[0,1]$ a	$\operatorname{nd} \int_0^1 f(x) dx = 0$, then $\int_0^1 \int_0^x f(x) f(x)$	y)dydx
(a) Depends on $f(y)$ (b)	$(1)^{\frac{1}{2}}$	(c) 0	(d) cannot be evaluated.
121. $\iint_{S} (x - 3y^2) dx dy$ wher	$e S = [0,2] \times [1,2]$] equals	
(a) 12 (t	o) -12	(c) 6	(d) 0
122. Let $A(x) = \int_0^2 f(x, y) dy$	and $B(y) = \int_0^1 f($	(x, y)dx where $f(x, y)$	$y) = x^2 y^3$, then
(a) $A(x) = 3x^2$, $B(y) = y^4/4$ (c) $A(x) = 4x^2$, $B(y) = y^3/3$		(b) $A(x) = x^4$, (d) None of the	$B(y) = y^3$
(C) A(x) = 4x , B(y) = y /3		(d) None of the	e above.
123. The value of the integral	$\iint_{P} \sqrt{x^2 + y^2} \ dx$	dy where $R = \{(x, y)\}$	$) \in \mathbb{R}^2: x \le x^2 + y^2 \le 2x \} $ is
	7/9	(c) 14/9	(d) 28/9
104 ICD [0.4] [0.4] .1	$-x^2-y^2$	1' 1 .	
124. If $R = [0,1] \times [0,1]$, then	4		(1) > 7
			(d) None of these.
125. f is continuous on $[0,1]$ a	and $\int_0^1 f(x) dx = 0$), then $\int_0^1 \int_0^\infty f(x) f(x)$	
(a) depends on $f(y)$ (b) $126. f(x,y) = \begin{cases} 2 & 1 \le x \\ 3 & 3 \le x \end{cases}$	$\frac{1}{2}$ (c) 0	(d) cannot l	be evaluated
126. $f(x,y) = \begin{cases} 2 & 1 \le x \\ 3 & 3 \le x \end{cases}$	$< 3 \qquad 0 \le y$ $< 4 \qquad 0 < y$	≤ 2 then,	
(a) f is not integrable on $[1, 4] \times$	[0,2]		
(b) $\int_0^2 \int_1^4 f = 5$.			
(c) $\int_0^2 \int_1^4 f = 14$.			
(d) None of these.	1		
127. Let $f(x,y) = \sin\left(\frac{1}{x+y}\right)$,	$g(x,y) = \frac{1}{x+y}$ and	$D = \{(x, y) \colon x^2 + y\}$	$y^2 \le 1\}.$
Then which of the following state			
(a) f and g are Riemann integral(b) f is Riemann integrable over		emann integrable ov	er D.
(c) g is Riemann integrable over	f D , but f is not Rie	emann integrable ov	
(d) Both f and g are not Rieman	n integrable over <i>D</i>).	
$f(x,y) = \{0 \text{ if } x,y \in \mathbb{Q}\}$	$P \cap R$	1] v [0 1] Then	
128. $f(x,y) = \begin{cases} 0 & \text{if } x,y \in \mathbb{Q} \\ 3 & \text{if otherw} \end{cases}$			
(a) f is continuous at $(0,0)$		$\lim_{(x,y)\to(0,0)} f(x,y) dx$	
(c) f is integrable over R	(d)	f is not integrable	over R
129. If $f(a) = \int_{a}^{a^2} \frac{\sin ax}{x} dx$	then $f'(a)$ is		

(a) $\int_{a}^{a^2} \frac{a \cos ax}{x} dx$	(b) $\int_a^{a^2} \cos ax dx$
(c) $\int_{a}^{a^2} \cos ax dx + 2 \sin a^3 - \frac{\sin a^2}{a}$.	(d) None of the above
130. If $g(x) = \int_0^1 \frac{\sin xy}{y} dy$ on any interva	[a, b] not containing zero then $g'(x)$ equals
(a) $\frac{\cos x}{x}$ (b) $\frac{\sin x}{x}$ (c)	(d) None of the above.
131. $f(x,y) = \begin{cases} \frac{\sin x}{x} & x \neq 0\\ 0 & otherwise \end{cases}$	
(a) $\iint_R f = 1$	
(b) $\iint_R f = \cos 1 - 1$	
(c) $\iint_R f = 1 - \cos 1$	
(d) None of these.	
V	V is he region bounded by the paraboloid $y =$
the plane $y = 4$ can be expressed as an it	
(a) $2 \int_0^2 \int_0^{\sqrt{4-x^2}} \int_{x^2+z^2}^4 dy dz dx$	(b) $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+z^2}^{4} dy dz dx$
(c) $2 \int_0^2 \int_0^{\sqrt{4-x^2}} \int_{x^2+z^2}^4 dz dy dx$	(d) None of these.

133. The triple integral $\int_0^1 \int_0^x \int_0^y xy^2 z^3 dx dy dz$ (a) $\frac{1}{90}$ (b) $\frac{1}{50}$ (c) $\frac{1}{45}$ (d) $\frac{1}{10}$

The value of $\int_0^1 \log(xt) dx$ is

(a) $\frac{(t+1)^3}{3}$ (b) $t^2 + t - 1/3$ (c) $t^2 - 2t - 1/3$ (d) None of these.

If $g(x) = \int_0^1 \log(x^2 + y^2) dy$ $x \neq 0$, then g'(x) equals

(b) $2 \log t$ (c) $\log t$ (d) None of these

(c) $2tan^{-1}\frac{1}{r}$ (d) does not exist.

D is the closed region in the XY plane bounded by $y = \sqrt{1 - x^2}$ and the x-axis. If R is the

region in the $r - \theta$ plane whose image is D under the transformation $x = r \cos \theta$, $y = r \sin \theta$ then

The double integral $\int \int_{S} f(x,y) dxdy$ where $S = \{(x,y)/x^2 + y^2 \le 2x\}$, expressed as an

134. The value of $\int_0^1 (x+t)^2 dx$ is

(a) $\{(r, \theta)/0 < r < \sqrt{2}, 0 \le \theta \le 2\pi\}$

(c) $\{(r, \theta)/0 < r < 1, 0 \le \theta \le \pi/2\}$

iterated integral in polar coordinates is

(a) $\int_0^{2\pi} \int_0^{2\cos\theta} f(r\cos\theta, r\sin\theta) r \ drd\theta$

(a) log(1+t)

(a) 0

137.

(b) $\{(r, \theta)/0 < r < 1, 0 \le \theta \le 2\pi\}$

(d) $\{(r, \theta)/0 < r < 1, 0 \le \theta \le \pi\}$

(b) $\int_0^{2\pi} \int_0^{2\cos\theta} f(r\cos\theta, r\sin\theta) drd\theta$

 $y = x^2 + z^2$ and

(c) $\int_0^2 \int_0^2 (16 - 16)^2$	3 $dzdrd\theta$	(d)	$\int_{-2}^{2} \int_{-2}^{2} (16 - x^{2} - x^{2}) dx = \int_{0}^{4} \int_{0}^{4} (16 - x^{2} - x^{2}) dx dy dx$ $(b) \int_{0}^{2\pi} \int_{0}^{2} \int_{r}^{2} r^{2}$ $(d) \int_{0}^{2\pi} \int_{0}^{2} \int_{r}^{2} r^{2}$	$(2y^2) dxdy$ in cylindrical coordinates is $dzdrd\theta$	
	lying in the <i>uv</i> plane un			e first quadrant is the image of $v = x - y$. Then the area of	
(a) 1	(b) 1/2	(c) v	$\sqrt{2}$	(d) Data insufficient	
	$xy, v = y/x$. Then $\iint_S dv du$	f(x, y) dxdy (b)			
(a) $\int_{-1}^{1} \int_{-1}^{1} f($	(u)dvdu	i. If $u = x + y, v = 0$ (b) (d)	$\int_{-1}^{1} \int_{-1}^{1} \frac{f(u)}{4} dv dv$	$\int_{S} f(x+y)dxdy \text{ equals.}$	
154. The expression for mass of a solid inside the cylinder $x^2 + y^2 = a^2$ and between the planes $z = 0$ and $z = h$ in the first octant with density x is					
(c) \int_0^h	$\int_0^a \int_0^{\sqrt{a^2 - y^2}} y \ dxdydz$ $\int_0^a \int_0^{\sqrt{a^2 - y^2}} x^2 \ dxdydz$ pression for moment	Z	(d) $\int_0^h \int_0^a \int$	$\int_{0}^{\sqrt{a^2-y^2}} x \ dxdydz$ $\int_{0}^{\sqrt{a^2-y^2}} y^2 \ dxdydz$ nogeneous tetrahedron	
bounded l (a) μ	by the planes $z = x + \int_0^1 \int_0^{1-y} \int_{x+y}^1 (x^2 + y^2) \int_0^1 \int_0^{1-y} \int_{x+y}^1 z^2 dz dx dx$	y, x = 0, y = 0, z $f(x) dz dx dy$	x = 1 with volum (b) μ		
				octant bounded by the density $\rho(x, y, z) = 1 + x + y$	
(c) 157. The modern density ρ	$\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} \int_{0}^{1} (1+x+1)$ coment of inertia relations at each point is	+y+z) dz dx dy	(d) Non	$\frac{x^2}{5} \int_0^y (1 + x + z) dz dx dy$ e of the above. ensional region <i>D</i> with	


```
d) \propto: [0, 2\pi] \rightarrow IR^3, \propto (t) = (0, 2 \cos t t, 2 \sin t)
```

- The parametric equations $x = 2 + 3t^3$ $y = 4 + 7t^3$ elements. 169.

 - a) The curve $y = x^3$, $0 \le x \le 1$. b) The curve $y^3 = x$, $0 \le x \le 1$. c) The curve $x^3 y^3 = 2$, $0 \le x \le 1$.
 - d) line having intercept on both the axes.
- The parametric equations $x = \cos(\cos t)$, $y = \sin(\cos t)$, $t \in [0, \pi]$ describes.
- a. one full circle
- b. an arc of a circle in first quadrant
- c. one half circle above the XY-plane
- d. an arc of a circle in the first and fourth quadrant
- The equation $x = \cos t$, $y = \cos t$, $0 \le t \le \pi$ parameterizes
- a) an arc of a circle.
 b) an arc of a parabola
- c) a line segment
- d) a branch of a hyperbola.

172.
$$I = \int_C \frac{-y \ dx + x \ dy}{(x^2 + y^2)^m}$$
 where $C : x^2 + y^2 = r^2$. Then I is

- a) 0. b) 2π . C) $\frac{2\pi}{r^{2m}}$ d) $\frac{2A}{r^{2m}}$; where A is area of the circle. 173. $F(x,y) = (x^2y^5, ax^by^c)$ is conservative in the plane then
- a) $a = \frac{1}{3}$, b = 1, c = 6

- b) a = 5/3, b = 3, c = 4.
- c) b & c exist but a does not exist.
- d) a = 1, b = 2, c = 5.

174.
$$F(x, y, z) = (2xy + y^2, x^2 + 2xy + z, y + e^{xz})$$
 then

- a) there exist a function $\phi(x, y, z)$ such that $F = \nabla \phi$
- b) there does not exist a function $\phi(x, y, z)$ such that $F = \nabla \phi$
- c) $\phi(x, y, z) = 2x^2y + 2xy^2 + 2y^2, F = \nabla \phi$
- d) $\phi(x, y, z) = x^2y + xy^2 + \frac{e^{xz}}{x} + yz, F = \nabla \phi$
- The line integral $\int_C \overline{F} \cdot \overline{dr}$; $\overline{F} = \frac{-y \, \hat{\imath} + x \, \hat{\jmath}}{x^2 + y^2}$ and $C: x^2 + y^2 = a^2$. 175.
- a) depends on a.
- b) does not exist as Green's Theorem is not applicable.
- c) is a constant independent of a.
- d) none of the above.
- 176. $I = \oint_C y \, dx + 2x \, dy$ where *C* is a closed curve of the region $x^2 + y^2 \le a^2$ Then *I* is a) a^2 b) πa^2 c) 0. d) None of these.

- 177. $\oint_C P dx + Q dy = 0$ around every C is a closed path C in a simply continued region R then a) $\frac{\partial P}{\partial v} = \frac{\partial Q}{\partial x}$ if P and Q are C^I function.
 - b) $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ always.
 - c) $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

180.	$\nabla f(x, y, z) = 2$ a) 5.	$2xyze^{x^2}\hat{\imath} + ze^x$ b) e.	$c^2 \hat{j} + y e^{x^2} \hat{k} \text{ and } c + 5.$	f(0,0,0) = 5. The d) $3e$	en $f(1,1,1)$.			
181.	$\int_{c} y dx +$ a) 2π		ery closed curve c) $\pi/2$	C is d) None of the	hese.			
t	 a) ∫_{C1} Pdx + Qdy = ∫_{C2} Pdx + Qdy for any two curves C1 & C2 with same end points. b) ∫_{C1} Pdx + Qdy = ∫_{C2} Pdx + Qdy for any two curves C1 & C2 by Green's theorem. 							
	$Pdx + Qdy \neq 0$ one of these. The equation x	2						
183. The equation $x = u^2 - v^2$, $y = 2uv$, $z = u^2 + v^2$ represents a) a cone. b) a sphere. c) a circle. d) a Cylinder. 184. The equation $x = r \cos \theta$, $y = r \sin \theta$, $z = 4 - r^2$ represents. a) a cylinder. b) a sphere. c) a paraboloid. d) none of these. 185. For the cylinder $x = 3 \cos t$, $y = y$, $z = 3 \sin t$ at the point $\left(3/\sqrt{2}, 1, 3/\sqrt{2}\right)$. a) there is an unique unit normal vector. b) there are two unit normal vectors. c) there is no unit normal vector.								
186.	=	$\alpha = u + v, y = 0$		v^2 ; $0 \le u \le 1, 0$ c) a paraboloid	$\leq v \leq 1$. d) a Cylinder.			
187.	=		$5 \sin \theta$, $z = 7$; b) a plane.	$0 \le \theta \le 2\pi$ represonant represonant representations of the control of the contr				
188. 2 189.	oriented upwards a) 1.	and at the original	in is o) –1.	S where S is the dicolor. 1, 0, 0), (0, 1, 0)	d) None of these. and (0, 0, 1) is			

178. $I = \oint_c (x+y)\hat{i} + (x-y)\hat{j}$, Where *C* is the ellipse $b^2x^2 + a^2y^2 = a^2b^2$ then *I* is a) πab b) 0. c) $\pi(a+b)$ d) ab.

179. $I = \int_{c} y dx + x dy$ where *C* is the path $(t^{9}, sin^{9}(\pi/2))$; $0 \le t \le 1$ Then *I* is a) 1 b) 0. c) -1. d) π .

d) Nothing can be said about $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$.

a) $\sqrt{3}$.	b) $\frac{\sqrt{3}}{2}$.	c) $2\sqrt{3}$.	d) 1/2.	
190. The surface integral of <i>F</i> (0, 0, 0), (0, 2, 0) and (0, 0,		$r^2\hat{j} - z\hat{k}$ on the tr	iangle with vertices	
	c) 0.	· · · · · · · · · · · · · · · · · · ·	1/2	
 191. The surface area of the s a) A depends on a, b, c and r. c) a depends only on r. 	b) A	$(y-b)^2 + (z-c)$ A depends only on None of these.	$r^2 = r^2$ is denoted by A. The a, b, c .	n,
192. The equation $x = u + 2$ a) a general plane. c) a line in \mathbb{R}^3		= 3u + 4v describing through the original		
193. The magnitude of the fur	ndamental vector pr	roduct $\frac{\partial \bar{r}}{\partial r} \times \frac{\partial \bar{r}}{\partial r}$ for	surface	
$\bar{r}(y,y) = (y+y)\hat{i} + (y+y)\hat{j}$	(1-12)i + 4k is			
(a) $\sqrt{4 + v^2}$ (b) $\sqrt{4 + v^2}$	$\sqrt{4+128}v^2$	$(c) \sqrt{4v^2 + 1}$	(d) None of these.	
194. The parametric represen	tation of cylinder x	$x^2 + y^2 = 4$, $0 \le 2$	$z \le 1$ is given by	
a) $x = 2\cos u, \ y = 2\sin v,$	$z = u^2 + v^2, 0 \le v$	$u \le 2\pi$, $0 \le v \le$	π .	
b) $x = 2 \cos u, y = 2 \sin u, x = 2 \sin u$				
c) $x = 2\cos u$, $y = 2\sin u$,	$z=z, \ 0 \le u \le 2\pi$	$z, \ 0 \le z \le 1.$		
d) None of the above.	,	, .		
195. The parameterization $x = 0 \le v \le 2\pi, -\infty < u < 0$		$= \cosh u \sin v, z$	$= \sin hu$, where	
a) an ellipsoid	•	oid of one sheet		
c) a cylinder	d) None of th			
196. The fundamental vector	product for the cone	<u>م</u>		
$x = r \cos \theta, \ y = r \sin \theta$			S	
a) $(-r\cos\theta, -r\sin\theta, r)$	b) (1	$r\cos\theta$, $r\sin\theta$, η	·)	
c) $(-r\cos\theta, r\sin\theta, r)$	d) (<i>r</i>	$\cos \theta$, $-r \sin \theta$,	r)	
197. The area of surface of re $x = u, y = f(u) \cos v$,				
a) $\int f(u) \sqrt{1 + (f'(u))^2} dx$	и			
b) $2\pi \int f(u) \sqrt{1 + (f'(u))}$	$\overline{)^2}$ du			
c) $\frac{1}{2\pi} \int_a^b f(u) \sqrt{1 + (f'(u))^2}$				
d) None of these.				

198. $\iint_{S} xdS$ where *S* is the triangle with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) is

207. If <i>V</i> is a simple solid region whose boundary surface is <i>S</i> and \hat{n} is a unit outward normal to <i>S</i> .
then for a harmonic function \emptyset defined on a region containing S , $\iint_S D\emptyset \hat{n}dS$ equals
(a) Volume of V (b) surface area of S (c) 0 (d) None of these.
208. If V is a simple solid region in \mathbb{R}^3 bounded by a smooth oriented surface S with \hat{n} as outward unit normal. and \bar{A} is a constant vector in \mathbb{R}^3 , then $\int_S \bar{A} \cdot \hat{n} dS$ equals (a) $ A $ (b) (surface area of S) $ A $ (c) (volume of V) $ A $ (d) 0
209. Let \hat{n} be a unit outward normal to a closed surface S which bounds a homogeneous solid V . then $\iint_{S} (x^2 + y^2) (xi + yj) . \hat{n} dS \text{ equals}$ (a) $ V $, the volume of V (b) $ S $, the surface area of S (c) $4I_z$, where I_z denote the moment of inertia about z -axis (d) None of these.
210. The flux of $\overline{F}(x, y, z) = x^3 \hat{i} + y^3 \hat{j} + y^3 \hat{k}$ outward through unit sphere S is (a) 4π (b) $\frac{12\pi}{5}$ (c) $\frac{8\pi}{3}$ (d) None of these.
211. If S_1 and S_2 are smooth oriented surfaces in \mathbb{R}^3 having same boundary C and \overline{F} is a vector field on \mathbb{R}^3 then $\iint_{S_1} (\nabla \times \overline{F}) . \hat{n}_1 dS = \iint_{S_2} (\nabla \times \overline{F}) . \hat{n}_2 dS$ if and only if (a) $\hat{n}_1 = \hat{n}_2$ (b) $\hat{n}_1 = -\hat{n}_2$ (c) $S_1 \cap S_1 = \emptyset$ (d) None of these.
212. Curl $(grad (x + z))$ is a) $x^2 \hat{i} + z^2 \hat{j}$. b) 0. c) $\vec{0}$ d) none of these. 213. $div (curl (x^2, yz, \sin z))$ is a) $2x + z + \cos z$ b) 0. c) $\vec{0}$. d) none of these.
213. $F(x,y,z) = (3xz, -5yz, z^2)$ and curl $(pyz^2, 0, qxyz) = F$. Then value of p and q are
a) $-1 \& 3$ b) $1 \& -3$ c) $-1 \& -3$ d) $1 \& 3$.
 214. Let C be the circle x² + y² = 4, z = -3 oriented counterclockwise. Let F = (y, xz³, -zy³) and I = ∮_C F · dr̄ Then a) Stoke's theorem is applicable and I = -112π. b) Stoke's theorem is applicable to calculate I. c) Stoke's theorem is not applicable but I = -112 π. d) None of the above.
215. The surface integral $\iint_S \nabla \times F$. $\hat{n} dS$ where F is continuously differentiable vector field and S is a closed surface is

c) depends on S

d) none of these.

b) depends on *F*

a) 0

216. a) 0	The line integral b) 1	$\int_C \overline{r} \cdot d\overline{r}$		a simple clends on C		is d) none of these.	
217.	F(x,y,z) = (y +	-z, x+z, x-	+ y) Then				
	$\operatorname{curl} F = 0 = \operatorname{div} A$ $\operatorname{curl} F = \overline{0} \text{ and } d$			b) <i>div F</i> = d) none of	= 3 and <i>cur</i> these.	l F = 0.	
218.	$I = \iiint_V (div \ f$ a) surface area of		V is the v volume V			1) 3.7	
219.	The surface integ			•	$\bar{r} = x\hat{\imath} + y$	$\hat{j} + z\hat{k}$ over the si	urface of the
	a) 1. b)	depends on	r	c) 0		d) None of these	·.
220.	The surface integ a) <i>V</i>	ral ∬ _s (r̂·r̂i b) 3V	\hat{a}) dS over	a closed so		h volume <i>V</i> is None of these.	
221. vo	,	$\operatorname{ral} \iint_{S} ax\hat{\imath}$	+ by ĵ + c	zk.dS over $b) (a$		e of a unit sphere e	nclosing a
222. 0	The surface integ $0 \le x \le 1, 0 \le y \le 1$	$ral \iint_{S} (x^{2} - 1, 0 \le z \le 1)$	$+ y^2$) $i + (1)^3$	$(y^2 + z^2)j$	$+\left(x^{2}+z^{2}\right)$)k where S is the	cube
	a) -3 b		c) 0		d) None o	f these.	
223. ∬	If ϕ is a harmon $grad \phi dS$	ic function a	and S is the	e unit spher		surface integral	
	a) does not existc) is the volume o	f the unit spl	here		b) is 1 d) is 0		
224. S is vertical cylinder of height 2, with its base a circle of radius 1 on the xy plane, centered at the origin and S includes the disks that close it off top and bottom, then the surface integer $\iint yj$ equals							
	a) π	b) 2π	c)	$\pi/2$	d)	$\pi/4$	
225.	The surface integral a) a non zero const				r field F and d) None o		surface is
226.	A vector field F	is tangent to	the bound	dary of a re	gion S in sp	pace. Then $\iiint_S di$	v FdV ,

- a) depends on \overline{F} and S.
- b) 0
- c) depends only on S
- d) Gauss Theorem not applicable.
- 227. The result $\iint_{S_1} (\nabla \times F) \cdot ndS = \iint_{S_2} (\nabla \times F) \cdot ndS$ where surfaces S_1 and S_2 . have common boundary can be prove using
- a) Only Gauss theorem and not by Stokes theorem
- b) Only Stokes theorem and not by Gauss theorem
- c) Neither from Stokes not from Gauss theorem
- d) None of the above.