Objective Questions TYBSC Maths I Sem V

1. Reversing the order of integration of f01 f;z f(x,y)dydx we get

@ Jo 2 f@ydxdy ) fy L7 feyydxdy @ [y f," G y)dxdy  (d) None of these
2. Reversing the order of integration of f01 ff f(x,y)dydx we get

@ fy [ faoy)dxdy ) fy 2. f e y)dxdy  (©) [y [ f(x,y)dxdy  (d) None of these
3. Reversing the order of integration of fol f;‘ f(x,y)dydx we get

@ Jy L2, fyddxdy  (0) [y f, fey)dxdy  (©) [y f) fGoy)dxdy  (d) None of these

4. Reversing the order of integration of f01 fj; f(x,y)dydx we get

@ Jy 7 faydxdy  ®) [ Feondxdy (@ [ 7 fGy)dxdy  (d) None of these
5. Reversing the order of integration of fol f:x f(x,y)dydx we get

@ Jy 17 fydxdy ) fy [°7 fy)dxdy () f [ f(x,y)dxdy  (d) None of these
6. Reversing the order of integration of fol fol_x f(x,y)dydx we get

@ Jfy [y fOey)dxdy  ®) ) fy 7 fGoydxdy  (© Jy )7 fGy)dxdy  (d) None of these

7. Reversing the order of integration of f_ll f_% f(x,y)dydx we get
—2 —12 —v2
@ [, [ e foydxdy ) [ [ 2 fydxdy @ 1 [ fGay)dxdy  (d) None of

these

fologx

@ f, [5fCydxdy () [y [P fCoy)dedy () [ [,° f(x,y)dxdy  (d) None of these
fm

8. Reversing the order of integration of [; f(x,y)dydx we get

9. Reversing the order of integration of fO% f(x,y)dydx we get
@ ) [ fCyydady ) ) 12 fydxdy  (©) fy f2 fGoy)dxdy  (d) None of these
10. Reversing the order of integration of fol f02 f(x,y)dydx we get
@ [ [ fy)dxdy  (0) [3f fGy)dxdy  (© [y [ fCoy)dxdy  (d) None of these
11. Reversing the order of integration of fol f(;/m f(x,y)dydx we get
@ [ feendxay  ®) [ feydxdy © J) 5 FGy)dxdy () None of
these

12. Reversing the order of integration of f_ll Jo 1 f(x,y)dydx we get
@ Jo [ e fCoyydxdy ) [1 [ feaydxdy  (© fy [ fxy)dxdy  (d) None of

these

13. Reversing the order of integration of f01 f_% f(x,y)dydx we get
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@ fy [ feydxdy ) [ [V fondxdy (@) fy [ f(y)dxdy  (d) None of
these

Reversing the order of integration of fol f;/y f (x,y)dxdy we get

(a) fol f;cf(x. y)dydx  (b) fol f;zf(x, y)dydx  (c) fol fle(x, y)dydx  (d) None of these

Reversing the order of integration of f01 I yyz f (x, y)dxdy we get

1 x 1 Vx 1 rx
@ [, [, feoydydx  (b) [y f;~ fGey)dydx  (¢) [, f\/;f(x,J')dydx (d) None of these

. . . 1,1

Reversing the order of integration of fo fy f(x,y)dxdy we get
(@ [, [ fGoy)dydx () [y [y feydydx () [y 7 fx,y)dydx  (d) None of these
Reversing the order of integration of fol f;/f_’ f (x,y)dxdy we get
@ [ [ fandyde ) ) [ fydyde  (©) fy [5fCny)dydx  (d) None of these
logy f(x,y)dxdywe get
@ Jy [, Feeydydx  (®) [y [ fGoydydx  (©) f, [5 f(y)dydx  (d) None of these
Reversing the order of integration of fol fol_y f(x, y)dxdy we get

@ [ [T fomdydx 0 [ [ fuy)dyde (€ [ 7T (o y)dydx  (d) None of these

Reversing the order of integration of f [ “\}13’7 f(x,y)dxdy we get

@ [ feoydyde ) [ 1 foydydx (© [ [, f(x,y)dydx  (d) None of
these

Reversing the order of integration of f S5

Reversing the order of integration of fol Iy, f (e, y)dxdy we get
@ [5[ 7 fndyde ) [} [ fGoy)dydx (€ [ [ f(x,y)dydx  (d) None of these

1
Reversing the order of integration of f vz N Y% £(x, y)dxdy we get

= Vix?
@ [E0T feoyydydx  (0) rf S fey)dydx (©) fff “f(x,y)dydx  (d) None of
these
Reversing the order of integration of foz fol f(x, y)dxdywe get

@ f) [Pfeydydx  ®) f) [2fuy)dydx  (©) [ [, f(x,y)dydx (d) None of these
Vi-y?

Reversing the order of integration of f f f(x,y)dxdy we get

@ [ 1 fedydx ) f) L7 foydydx © T G y)dydz (d) None of these
Reversing the order of integration of f ) “\/1% f(x,y)dxdywe get

@ [0 fyndyde ) [ 1020 oo y)dydx © T Féxy)dydx (d) None of these
Reversing the order of integration of f ) “% f(x,y)dxdy we get

@ [ feoydydxe ) [ L Feamdydx (© [ [ ey £, y)dydx  (d) None of these



27. fol f:xdydx =?
(8 () 3 (© ; (d)Noneof these
28. [F [ dydx =2
@ -1 (b) L (c) 0 (d) None of these
29. [ [ 7 dxdy="
(8 5 () 3 (©)5 (d)None of these
30. fol fylxdxdy =?
1 1 1
@ Z(b)ﬁ (c) 3 (d) None of these
3L [ [5, dxdy =2
@ 1(@®) 2 (c) 0 (d)3
32. f01 f;z xdydx =?
1 2
@ =02 @©
33. [ [ dydx =2
(8 5 (0) 3 (0) 3 (d)None of these
34. [ [ [ x dydxdz =2
(@ 14(b) 15 (c) 16 (d) None of these
35. fol f;g/f(x,y)dxdy =?
(@ 5 ()¢ (c) 3 (d)None of these
1 02 p2
36. [, J, J, xdxdydz="
@ 2 (b) 1 (c) 3 (d) None of these
1 r1—x
37. [, J, “dydx=?
(8 5 (0) 3 (0) ; (d)None of these
38. fol f;/yxdxdy =7
1 1 1
@) > (b) A (c) 5 (d) None of these
39. [ [ [} 2> dzdxd y =2
@ 1 (b)5 (c)6 (d) None of these
40. [} [ [¥ 1dydxdz =2
(@ 8 (b)16 (c)4  (d) None of these

41. The area enclosed by the lines y=x, x=2 and x axis is
@ 1 ()2 (c) 4 (d)Noneofthese

(d) None of these

42. The area enclosed by the line y=x , the circle x? + y2 = 1 and the y axis in the first quadrant is
@ 7= (b) = (©)7 (d) None of these

43. The area enclosed by the parabolas y = x? and x = y? is
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(8 5 (0) 3 () ; (d)None of these

The area enclosed by the line x+y=1 and the coordinate axis is

(8 ; () ¢ (©) 5 (d)None of these

The area enclosed by the line x=1,y=logx and the x axis is

@ 1 (b)e (c) etl (d) None of these

The area enclosed by the lines x=2 y=1 and the coordinate axis is

@ 1 (2 (c)3 (d)None of these

The area enclosed by the line y= e ,the curve y = e* and the y axis is

@ 1 (b)2 (c) 3 (d)None of these

The area enclosed by the line y=x and the parabola y? = x is

(@ () < (c): (d)Noneof these

The area enclosed by the line y=x and the parabola x? = y is

(8 5 () 7 (©) ¢ (d)None of these

The area enclosed by the line y=x , the circle x? + y2 = 1 and the x axis in the first quadrant is
@ = (b) 5 (©F (d)None of these

The area enclosed by the lines y=x, y=2 and the y axis is

@ 1 (b)2 (c) 4 (d)None of these

The double integral [ [ f(x,y) dxdy where S is the region enclosed by x* +y? =1,y =
x,and the x axis where f(x,y) = x, expressed as an iterated integral in polar coordinates is

() fon fol r?sinfdrdf (b) f: fol r?sin@drdé (c) [# fol r?cos8drdf (d) none of these

The double integral [ [ f(x,y) dxdy where S is the region enclosed by x* +y* =1,y =
x,and the y axis where f(x,y) = x where , expressed as an iterated integral in polar coordinates is

(a) fon fol r?sinfdrdf (b) [# fol r2 sinfdrdf (c) fg folrz sinfdrdf (d) none of these
4

The double integral [ [ f(x,y) dxdy where S is the region in the first quadrant enclosed by x* +

y? = 1,and by the coordinate axis where f(x,y) = 2, expressed as an iterated integral in polar
coordinates is

@ [ [} 2rdrde (b) [ [, rdrd8 (c)[7 [, 2rdrdé (d)none of these

The double integral [ [ f(x,y) dxdy where S is the region enclosed by x* +y* =

1,the y axis on the right side of the y axis where f(x,y) = 1, expressed as an iterated integral in polar
coordinates is

@ [ [ rdrde (b) [ [, rdrdg (c)[? [, rdrd6 (d)none of these
2
The double integral [ [o f(x,y) dxdy where S is the region enclosed by x* +y* =

1, the x axis above the x axis where f(x,y) = x, expressed as an iterated integral in polar coordinates is
(a) fon fol r? cosfdrdd (b) [+ fol r? sinfdrdé (c) J2 folrz sinfdrd@ (d) none of these
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The double integral ffs f(x,y) dxdy where S is the region enclosed by x? + y? = 1,where f(x,y) =
1, expressed as an iterated integral in polar coordinates is

@ [7" [ rdrde (b) fof f,rdrdé () fog f, rdrd6 (d) none of these

The double integral ffs f(x,y) dxdy where S is the region enclosed between the circles x? + y? =
1,x% + y%2 = 4 where f(x,y) = 1, expressed as an iterated integral in polar coordinates is

@ [ [irdrde (b) fof [irdrdd (c) fog f2rdrde (d) none of these

The double integral ffs f(x,y) dxdy where S is the region enclosed between the circles x? + y? =

1,x2 + y% = 4 that lying above the x axis where f(x,y) = 1, expressed as an iterated integral in polar
coordinates is

@ [ [[rdrde (b) [* [‘rdrd8 (c) [ [ rdrds (d)none of these
The double integral [ [ f(x,y) dxdy where S is the region enclosed by x* = y and y =
x,where f(x,y) = 2, expressed as an iterated integral in polar coordinates is

@ [ [ 2rdrde (b) [# [{°°°° 2rdrdo (c) fz [i°* 2r drd6 (d) none of these

The double integral ffs f(x,y) dxdy where S is the region enclosed between thr circles x? + y* =
1,x% + y2 = 9 where f(x,y) = 2, expressed as an iterated integral in polar coordinates is

@ [ [P2rdrdg (b) [3 [, 2rdrde (c) [7 [ 2rdrd6 (d)none of these

The double integral ffs f(x,y) dxdy where S is the region enclosed by x* + y? = 1,where f(x,y) =
2, expressed as an iterated integral in polar coordinates is

(@ [ [ 2rdrde (b) [;" [, 2rdrd6 (c) [2 [, rdrd6 (d)none of these

The double integral [ o f(x,y) dxdy where S is the region enclosed by x> +y* =1,

the x axis above the x axiswhere f(x,y) = 3, expressed as an iterated integral in polar coordinates is

(@ [ [} 3rdrde (b) [+ [, 3rdrd8 (c)[Z [ 2rdrdé (d)none of these

The double integral [ [ f(x,y) dxdy where S is the region enclosed by x* +y* =

1, and the y axis to the right of y axis where f(x,y) = 5, expressed as an iterated integral in polar
coordinates is

(@ [ [} 5rdrd8 (b) [% [, Srdrd8 (c) 7 [, 5rdrdf (d)none of these

The double integral ffs f(x,y) dxdy where S is the region enclosed in the first quadrant by x? +

y? = 1,and by the coordinate axis where f(x,y) = 1, expressed as an iterated integral in polar
coordinates is

@ [ [ rdrde (b) [+ [ rdrd8 (c)[Z [, rdrd8 (d)none of these

The double integral [ [ f(x,y) dxdy where S is the region enclosed by x* +y* =1,y =
x,and the y axis where f(x,y) = y, expressed as an iterated integral in polar coordinates is

() fon fol r? cosfdrdd (b) [+ fol r? cosfdrdf (c) f%; folrz cos@drd6 (d) none of these



67. The double integral [ [, f(x,y) dxdy where S is the region enclosed by x* +y* =1,y =
x,and the x axis where f(x,y) =y, expressed as an iterated integral in polar coordinates is

() f: f01 r?sin@drdf (b) f: folrz sin@ drdf (c) fozfol r2sin@ drd@ (d) none of these

68. The double integral [ [ f(x,y) dxdy where S is the region enclosed by x =1,y =
x and by the x axis,where f(x,y) = x, expressed as an iterated integral in polar coordinates is

() fon fol r? cosfdrde (b) [# fosecg r? cosfdrdf (c) fg f01 r2 cosfdrdd (d) none of these

69. The speherical polar coordinates of the point (1, 0, 0) are

@ (0,0,1) (b) (0,1,0) (c) (1,0,0) (d) none of these
70. The speherical polar coordinates of the point (0, 1, 0) are

(@) (1, % 0) (b) (0,1,0) (c) (1,0,0) (d)none of these
71. The cyllindrical coordinates of (1, 1, 1) are

(@) (V2, %, 1) (b)) (0,1,0) (c) (1,0,0) (d) none of these

72. The cyllindrical coordinates of (0, 1, 1) are
(@) (vV2, %, 1) (b) (1,%, 1)  (¢) (1,0,0) (d)none of these

73. The double integral [ [ f(x,y) dxdy where S is the region enclosed by x =1,y =
x and by the x axis,where f(x,y) = y, expressed as an iterated integral in polar coordinates is
(a) fon fol r2sin@drdd (b) fon fol r2sin@ drdf (c) fog fosecg r2sin @ drd@ (d) none of these
74. A parametric equation of the segment joining (0, 0) to (1, 1) is

(@) a(ty=(t,t) wherete [0, 1] (b) a(t)y= (2t , t) where t € [0, 1]
(¢) a(t)=(t, sint) wheret€ [0, 1] (d) none of these
75. A parametric equation of the segment joining (0, 0) to (1, 2) is
@) o(t)=(t,t) wherete [0, 1] (b) a(t)=(t, 2t) where t € [0, 1]
(¢) a(t)=(t, t) where t € [0, 1] (d) none of these
76. A parametric equation of the segment joining (0, 0) to (0, 1) is
(@) o(t)=(0,t) wherete [0, 1] (b) a(t)=(t, t) wherete€ [0, 1]
(c) a(t)=(t,t) wheret € [0, 1] (d) none of these
77. A parametric equation of the segment joining (0, 0, 0) ) to (1, 2, 1) ) is
@) oty=(t,t,t) wherete [0, 1] (b) a(t)=(t, 2t,t) wheret € [0, 1]
() a(t)=(t,t,2t) wheret € [0, 1] (d) none of these
78. A parametric equation of the segment joining (0, 0,0)to (3,1,1) is
@ at)=(t,t,t) wherete [0, 1] (b) a(t)= (3t, t, 2t) where t € [0, 1]
(c) a(t)= (3t, t, t) wheret € [0, 1] (d) none of these

79. A parametric equation of the curve y? = x joining (0, 0) to (1, 1) is



(@) a(t)=(t,t) wherete [0, 1] (b) a(t)=(t, t)) wheret € [0, 1]

(¢) a(t)=(t, t) where t € [0, 1] (d) none of these
80. A parametric equation of the curve x?=y joining (0, 0)to (1, 1) is
(@) o(t)=(t*,t)wherete [0, 1] (b) a(t)=(t, t) where t € [0, 1]
(c) a(t)=(t,t) wheret € [0, 1] (d) none of these
81. A parametric equation of the curve x? + y? = 1 joining (1, 0) to (0, 1) in the counter-clockwise path is
(@) a(t)=(cost, sint) where t € [0, 1] (b) a(t)= (cost , sint) where t € [0, %]
(c) a(t)=(t,t) wheret € [0, 1] (d) none of these
82. A parametric equation of the curve x? + y? = 1 joining (1, 0) to (0, 1) in the counter-clockwise path is
@) ot)=(t,t) wherete[0, 1] (b) a(t)= (sint , cost) where t € [0, 7]
(c) a(t)= (cost , sint) where t € [0, 7] (d) none of these

83. A parametric equation of the curve x? + y2 = 1 joining (0, -1) to (0, 1) in the counter-clockwise path is
() o(t)=(cost, sint) where t€ [==, 7] (b) a(t)= (sint , cost) where t € [0, 7]
(¢) a(t)=(t, t) where t € [0, 1] (d) none of these

84. The work done by F(x, y,z)= t+j+k when a particle is moved along the straight- line segment from

(0,0,0)to(1,1,0)1is
@ 1 (b) 2 (c) 3 (d) None of these

85. The work done by F(x, y,z)= t+j+k when a particle is moved along the straight- line segment from
0, 0,0)to(1,2,0)is
@ 1 by 2 (c) 3 (d) None of these
86. The work done by F(x, y,z)= t+j+k when a particle is moved along the straight- line segment from
(0,0,0)t0(0,1,0)is
@ 1 (b) 2 (© 3 (d) None of these

87. The work done by F(x, y,z)= t+j+kwhen a particle is moved along the straight- line segment from
(0, 0,0)t0 (1,0,0)is
@ 2 (b) 3 (c) 4 (d) None of these
88. The work done by F(x, y,z)= t+j-k when a particle is moved along the straight- line segment from
(0,0,0)t0(1,2,1)1is
@ 1 (b) 2 (c) 3 (d) None of these
89. The work done by F(x, y,z)= t+j-k when a particle is moved along the straight- line segment from
(0,0,0)0t0(3,1,1)is
@1 (b) 2 (¢) 3 (d) None of these
90. The line integral fc f do where f(x,y)= xand a(t)=(cost, sint) t€[ - w/2, n/2] is
@ 0 () 1 () 2 (d) None ofthese
91. The line integral fc f dawhere f(x,y)= yand a(t)=(cost, sint) t€[ - n/2, w/2] is
@ 0 () 1 () 2 (d None ofthese



92. The line integral fc f do where f(x,y)=y and o(t)= (cost, sint) te[ 0, n] is
@ 0 () 1 () 2 (d) None ofthese

93. The line integral [, f do where f(x,y)=xand a(t)= (cost, sint) te[0,n] is
@ 0 () 1 () 2 (d) None ofthese

94. The line integral fc f dowhere f(x,y)=yand o(t)= (cost, sint) te[ 0, w/2]is
@ 0 () 1 () 2 (d) None ofthese

95. The line integral [, f da where f(x,y)= x and a(t)=(cost, sint) te[ 0, n/2]is
@ 0 () 1 () 2 (d) None ofthese
96. Assuming the Green’s theorem conditions are satisfied ,which of the following line integrals gives area
enclosed by the simple closed curve C.
@ ¢ ‘Z—de + ’Zﬁdy (b) §. xdx +ydy () §. ydx +xdy (d) none of these
97. Assuming the Green’s theorem conditions are satisfied ,which of the following line integrals gives area
enclosed by the simple closed curve C.

(@ ¢. 5xdx+4ydy  (b) §. —4xdx + 5ydy (©) §. —4ydx + 5xdy (d) none of these

98. If F(x, y) = (y, X) is conservative vector field then the | ¢ F.do along any smooth path o joining (2, 1) to
(3,2)is
@ 1 (b) 4 (c) 14 (d) noneofthese
99. If F(x, y) = (2xy , x?) is conservative vector field then the [ ¢ F.do along any smooth path o joining (2, 1) to
(3,2)is
@ 1 (b) 4 (c) 14 (d) noneof these
100.If F(x,y) = (1, 0) is conservative vector field then the fc F.da along any smooth path a joining (2, 1) to
(3,2)is
@ 1 (b) 4 (c) 14 (d) none of these
101.1f F(x,y) = (0, 1) is conservative vector field then the fc F .da along any smooth path o joining (2, 1) to
(3,2)is
@ 1 (b) 4 (c) 14 (d)  noneof these
102. Assuming the Green’s theorem conditions are satisfied ,which of the following line integrals gives area
enclosed by the simple closed curve C.

X
@ 4. ~dy (b) §. —ydy (©) §. —ydx (d) none of these
103. Assuming the Green’s theorem conditions are satisfied ,which of the following line integrals gives area
enclosed by the simple closed curve C.

@ ¢. x*dx+y?*dy (b) §. (v* +x)dx + (x +2xy)dy (c) §. ydx + (x +y*)dy (d) none of these

104. Assuming the Green’s theorem is satisfying

105.  An expression for fol f:@ f (x, y)dydx in which the order of integration is reversed is

@ [, ), f G y)dxdy. (0) 7, [, f (e, y)dxdy.



(c) a sum of two integrals. (d) None of these.
1 r1+x f
106. 1= [ [, xy dydx.Thenlis

(@) Undefined (b) fol foy xy dxdy. ()0 (d) None of these.

107. I = fol f;z xf(y) dydx where f is continuous function defined on [0, 1]. Then I is

@ 3 J, & =¥ fO)dy (b) independent of £ ().

© 3, &2 —¥) fFO)dy (d) F(x)

108.  The value of the double integral f_ll fol e** siny dxdy is equal to

(8) 2cos1 [, e’ dx. (b) —2cos1 [, e dx ©) 0 (d) does not exist.
109. The double integral fol foxx dydx reduces to

(@ ;1 —y)dy (b) [y 3 x dxdy © [y [, x dxdy  (d)3 ], xdx

110. If f(x,y) = k, k constant and R = [a, b] X [c,d] then [ [ k dA equals

@ k(b—a)(d—c) (b) k(c —a)(d — b) ©) k(b—c)(d—a) (d) data insufficient
111, LetD = {(x,y):x* +y* <7} and f(x,y) = x* +y. Then [ [ fdA lies in between

(@) —16m and 4n (b) —2 and 2 (c) —8m and 24rn (d) —4m and 8w

112.  The iterated integral foz fxzzx (x? +y?) dydx represents

(a) The area of the region in the xy-plane bounded by the line y = 2x and the parabola y = x?

(b) Volume of the solid that lies under the paraboloid z = x2 + y? and above the region in the xy-plane
bounded by the line x = y/2 and x = \/y

(c) Volume of the solid the lies under the paraboloid z = x2 + y? and above the region in the xy-plane
bounded by y? = x and x = \/y

(d) None of the above.
113.  The volume of the region bounded by z =x+y,z=6,x =0,y =0,z =0 is

(a) 36 cubic units (b) 30 cubic units (c) 2/6 cubic units (d) None of these.
114, The volume of the solid given by x2 + y? < 1 and tan™*2 < z < 2 is
(@) w (b) m? (c)1 (d) None of these.

115.  Let V be the volume of the solid that lies under the paraboloid z = x? + y? and above the
region in the xy-plane bounded by the line y = 2x and the parabola y = x?2.

LetA = foz fxzzx(x2 +v?) dydx, B = f04 f)://z foxz+y2 dzdxdy. Then
@V=AbtV=B (b)V=4=8 C)V=AbutvV =B )V #A,V #B

116.  [ff, ysin(xy)dxdy where R = [1,2] x [0, ] equals

@ 7 (b) 21 © 0 )1

117. If £:[0,1] - R is continuous then [ f(y)e*dxdy, S = [0,1] x [0,1] equals
@ =D [ fOdy  ®)ef, fo)dy (© (S —e)fy fG)dy (d) None of these.
118, [f, e*/?dxdy whereS = {(x,y) € R*:1 <y <2,y <x < y*}equals



2 4 2 2_
(8 = -2 b <-% (0) (d) None of these.

119.  [ff, e®"*°Ydxdy where S = {(x,y) € R*:x* + y? < 4} lies between

(a) 4me?and 4me? (b) e™ and e2" (c) 47” and 4me  (d) None of these.

120. £ is continuous on [0,1] and folf(x)dx = 0, then fol Jy FCOf )dydx

(a) Dependson f(y) (b) % (©0 (d) cannot be evaluated.
121 ff, (x —3y*)dxdy where S = [0,2] x [1,2] equals

(@ 12 (b) -12 (c)6 (do

122. LetA(x) = fozf(x, y)dy and B(y) = folf(x, y)dx where f(x,y) = x?y3, then

(@) A(x) = 3x% B(y) = y*/4 (b) A(x) = x*,B(y) = y?

(c) A(x) = 4x%,B(y) = y3/3 (d) None of the above.

123.  The value of the integral ff, /x% +y? dx dy where R= {(x,y) € R*:x < x* + y? < 2x}is
@0 (b) 7/9 (c) 14/9 (d) 28/9

124, If R = [0,1] x [0,1], then [f, e™*"~>"dxdy lies between

(@ —1and0 (b) 0 and eiz (c)1/eand 1 (d) None of these.
125. £ is continuous on [0, 1] and folf(x)dx = 0, then f01 f(ff(x)f(y)dydx is
(a) depends on f(y) (b) % (0 (d) cannot be evaluated
(2 1<x<3 0<y<2
126. f(x'y)_{3 3<x<4 0<y<z ten,

(@) f is not integrable on [1,4] x [0, 2]
2 r4
o [y J, f=5
2 r4
© J, J, f=14
(d) None of these.
127. Let f(x,y) = sin (ﬁ),g(x, y) = ﬁand D ={(x,y):x* +y? < 1}.
Then which of the following statement is true.
(@) f and g are Riemann integrable over D.
(b) f is Riemann integrable over D, but g is not Riemann integrable over D.

(c) g is Riemann integrable over D, but f is not Riemann integrable over D.
(d) Both f and g are not Riemann integrable over D.

_(0ifx,y EQNR _
128. f(x,y) = { 3 if otherwise where R = [0, 1] x [0, 1]. Then
(@) f is continuous at (0, 0) (b) : l)i”%o 0 f (x, y)does not exist
x,y)—(0,
(c) f is integrable over R (d) f is not integrable over R
a? sinax

129. Iff(a) = dx then f'(a) is

X



(a) f;z aa;ﬂ dx (b) f;z cos ax dx

sin a?

(c) f:z cosax dx + 2sina® — (d) None of the above

sin

130. Ifg(x) = fol = dy on any interval [a, b] not containing zero then g’ (x) equals

y
(&) == (b) == (©) % (d) None of the above.
_ sinx x#0
181 fCuy) = { 8 otherwise

@ fl; f=1
(b) ff, f=cos1-1

© ff, f=1-cosl
(d) None of these.

132.  Thetripleintegral [ [ [, dV where V is he region bounded by the paraboloid y = x* + z* and
the plane y = 4 can be expressed as an iterated integral in the order dydzdx as

2 (V4-x?% 4 2 Va-x2 4
@2 g fy " [, dydzdx (0) 2, [z [z dyedzdx
(c) 2 f02 Jo A f;z 1,2 dzdydx (d) None of these.

133.  The triple integral fol f(f foyxyzz3dxdydz

@ ()= ©= @)=

134.  The value offol(x + t)? dx is

@Sy e2+¢c—-1/3 ()2 —2t—1/3  (d) None of these.
135.  The value of follog(xt)dx is

(@) log(1+¢t) (b) 2logt (c) logt (d) None of these
136. Ifg(x) = fol log(x? + y*)dy x # 0.then g'(x) equals
(a) 0 (b) 1 (c) 2tan™~  (d) does not exist.

137.  Diis the closed region in the XY plane bounded by y = V1 — x2 and the x-axis.If R is the
region in the r — @ plane whose image is D under the transformation x = r cos 8, y = r sin @ then
Ris

@) {(r,6)/0 <r <+2,0< 0 < 21} (b) {(r,0)/0 <r < 1,0 <0 < 2m}

) {(r6)/0<r<1,0<6 <m/2} d){(r,6)/0<r<1,0<0 <}

138.  The double integral [ [ f(x,y) dxdy where S = {(x,y)/x* + y? < 2x}, expressed as an
iterated integral in polar coordinates is

() fozn foz cos® f(rcos8,rsin@)r drdf (b) fozn foz cos® f(rcos8,rsin@) drdé



(c) fgfozcosgf(r cos 6,7 sin@)r drdf (d) fz fzcosef(r cos 6,7 sin 8)r drdf

139.  S={(xy)/a® <x*+y*> < b*}with0 <a<b.Then [ [ f(x,y) dxdy expressed in polar
coordinates is

(a) fozn fbaf(r cos 8,7 sin)r drdf (b) fozn f:f(r cos 6,7 sin@)r drdf

(c) 2 f: Jy f(rcos 8,7 sin@)r dodr (d) None of these.

140.  The integral fzf’”/gf(\/x2 + y2) dydx in polar coordinates is

@ 3" f foor drdo (b) J;* [ f@yr drde

© 1l 137 f@yr drde @ [0 J3 < foor drds

141.  The area of the ellipse 4x2 + 9y? = 36 is

( ) J'TL'/Z J-6/v4+55m rdrd® (b) ZJ'TL'/Z f6/v4+55m rdrd®

(c) 4 f:/z fﬁ/ SN0 1 de (d) None of these.

142.  The volume of the region bounded by z = x2 + y?, z=0,x = —a,y =a andy = —a is
4a* 8a* 16a*

€)) 5 (b) Ty (c )— (d) None of these.

143.  The volume V of the solid above the region R = {(r,0)/1 <r <3, 0 < 0 < m/4} and under
the surface z = e**** is

(a) me (b) me(e — 1) () g(e9 —e) (d) ge.

144,  If D isaplate defined by 1 < x < 2,0 < y < 1 and the density is ye*”, then mass of the plate
is

() e (b) < ©<—e @ —e+3

145.  The centroid of the region bounded above by the line y = 1 and bounded below by the curve
y =x2/4 is

(a) (0, 3/5) (b) (1,3/5) (©) (2,3/5) (d) (-1,3/5)

146.  The centroid of the uniform density rectangle bounded by the co-ordinate axes and the lines x =
a and y = b has its centroid at

@ (a/4, b/4) (b) (a/2,b/2) ©) (a/2,b/%) (d) None of these.

147. The moment of inertia of a homogeneous disk D, center at origin and radius a with density p
about the origin is %‘14. Then the moment of inertia of this disk about y-axis is

@ 0 (b) 2= () 2 (d) 2=

148.  The density p of aregion D is given by p(x,y) = k, k constant. Then the center of mass D

(a) depends on p for some value of k (b) depends on p for any value of k
(c) does not depends on p (d) is located at (0, 0)

149.  The volume of the solid bounded by the elliptic paraboloid x? + 2y?2 + z = 16, the planes x =
2,y = 2 and the three co-ordinate planes is given by the expression



@ [*, " (16 — x2 — 2y?) dxdy (b) 2, [7,(16 — x? — 2y?) dxdy

© [ [, (16 —x* - 2y?) dxdy (@) [, [(16 — x? — 2y?) dxdy

150.  The iterated triple integral f_zz f_\‘/w/f—; fjm(xz + y?) dzdydx in cylindrical coordinates is
@ " [, [T r3 dzdrde ®) [, [ [7r? dzdrde

© [ 7 [7r3 dzdrde @ [ 2 [* 7 dzdrdo

151. A region R bounded by the coordinate axes and x + y = 1 in the first quadrant is the image of
aregion S lying in the uv plane under the transformation u = x + y, v = x — y. Then the area of
the region S is

(a) 1 (b) 1/2 (c) V2 (d) Data insufficient

152.  Sis the region in the first quadrant bounded by the curve xy = 1, xy = 2,y = x,y = 4x.
Ifu=xy,v=y/x. Then [[. f (x, y)dxdy becomes
204 f(u 24 f(w
@ J; J; 27“ dvdu o) [, 22—;‘ dvdu
(©log2 [ f(v)dv. (d)log2 [ f(u)du.

153. S= {(x,y)/Ixl+lyl <1} fu=x+yv=—x+ythen [[. f(x+y)dxdy equals.
(@) [, [1, fwdvdu Oy %dvdu
(c) 4 fol fol f@wdvdu (d) f_ll fwdu

154. The expression for mass of a solid inside the cylinder x? + y? = a? and between the
planes z = 0 and z = h in the first octant with density x is

(@) [ E [T y dxdydz ®) [ 2 x dxdydz
@ Jy 3 1547 x* dxdydz (@) fy i 147" 2 dxdydz

155. The expression for moment of inertia about the z-axis of homogeneous tetrahedron
bounded by the planes z = x + y,x = 0,y = 0,z = 1 with volume density u is
@ufy fy 7 I, (2 +y?) dzdxdy ) wfy fy 7 Sy, dzdxdy
() u fol fol_y xl+y z% dzdxdy (d) None of the above.
156. The integral expression for each mass of the solid in the first octant bounded by the
cylinder x* + y? = 1 and the plane y = z,x — 0 and z = 0 with density p(x,y,z) = 1+ x +
y+zis

(a) fol Jy 1=y fox (1+x+y+2z)dzdxdy (b) fol Js 1 foy (1 + x + z) dzdxdy
(©) fol fo e fol (1+x+y+2z)dzdxdy (d) None of the above.

157. The moment of inertia relative to the xz plane of a three dimensional region D with
density p at each point is

@ [l], x*p dv ©) fif, xp av



o fff, y>pdv () [ff, ypdv

158. The moment of inertia relative to the z-axis of a three dimensional region D with
constant density 1 in spherical co-ordinates is

a) Jf, p* sin® ¢ dpdepdd (®) [If, p* sin® ¢ dpdepde

o) [lf, p* sin® ¢ dpdedo (@) [ff,, p* sin? ¢ dpdedo
159. The moment of inertia of a three dimensional region D with constant density 1 in
cylindrical co-ordinates is

a) [[f, zdzdrde (b)[ff, rzdzdrd® (c) [[f, rz*dzdrde (d) [ff, rdrdzdé
160.  If D is the sphere x* + y* + z* < 9 then [f[, dV isequal to

(a) 61 (b) 187 (c) 6% (d) 6*n
161.  If D is the unit sphere x* + y? + z* < 1 then [[f, z dV is equal to
(@) 0 (b) < (©)3m (d) None of these

162.  The volume of the portion of the solid cylinder x? + y? < 2 bounded above by the surface
z = x% + y? and below by the xy plane is

@ = (b) 21 (c) 8m (d) 4m
163. f:IR — IR?,(f (t) = (;—ttz ,—=)- The image of [0, 1] is

a) One full circle. b) an arc of a circle.

c) an arc of a parabola d) none of the these

164. f:IR > IR?,(f (t) = (e* + e7*, et — e7"). The image of [0, 1] is an
a) an arc of a circle. b) an arc of a parabola
c) An arc of a hyperbola d) none of these.

165. I = [FdrwhhereF = (xy,yz,zx) from (0,0,0) to (1,1,1). Thenlis
a) 0. b)1. c)1/2. d) none of these.

166. The value of the line integral f (x? + yz) di where Cis the arc x? + y? =1
from (0,1) to (1,0) in clockwise direction is
a) m/2. b) —m/2 om d) none of these.
167. The Cartesian representation of the curve having parametric equation
x =3+5sint,y=1+2cost;0 <t < 2m is

2 2 2 2
a) —+L = 1. b)) >+ % = 1.
25 4 ) 9o 1 ,
SYCEL R Y Qe ooy
3 1 25 4
168. A parameterization a of a circle of radius 2 centered at the origin in the X Z plane is
given by

a)0<:[0,2n] - IR3 o (t) = (2costt,2sint,0)
b) « [O 2n] - IR3 o« (t) = (2 costt,2sint,1)
c) [ 3n] - IR3OC(t)—(2costtO 251nt)



d)x:[0,2nr] » IR3 o« (t) = (0,2 costt,2sint)

169. The ﬁarametrlc equatlons x=2+3t> y=4+47t> elements.
ecurvey = x3,0 <x <1
b)Thecurvey = X 0 <x <1
c) Thecurvex® — y3=2,0 <x <1
d) line having intercept on both the axes.

170. The parametric equations x = cos(cost),y = sin(cost),t € [ 0,m] describes.
one full circle

an arc of a circle in first quadrant

one half circle above the XY-plane

an arc of a circle in the first and fourth quadrant

an o

171. The equationx = cost,y = cost,0 <t < m parameterizes
a) an arc of a circle. b) an arc of a parabola
c) a line segment d) a branch of a hyperbola.

-y dx+x dy
72 1= ) Ty v
2

173.  F(x,y) = (x2y>, ax?y®) is conservative in the plane then
a) a=§,b=1,c=6 b)a=5/3,b=3,c=4

c) b & c exist but a does not exist. d)a=1b=2,c=5.

where C : x?+y? =r? Thenlis

24 . .
S where A is area of the circle.

174. F(x,v,z) = Rxy + y?,x* + 2xy + z,y + e*?) then
a) there exist a function ¢(x, y, z) such that F = V¢

b) there does not exist a function ¢ (x,y,z) suchthat F = V¢
c) ¢(x,y,z) =2x%y +2xy% + 2y%, F =V¢

d) ¢(x,y,2) =x*y +xy? +67xz+yz,F = V¢

175.  Thelineintegral [ F-dr; F = yzrr?
a) dependson a.

b) does not exist as Green’s Theorem is not applicable.
c) is aconstant independent of a.

d) none of the above.

and C:x? +y?% = a?.

176. I =¢ ydx+ 2x dy where C isaclosed curve of the region x* + y? < a® Then I is
a) a® b) m a? c) 0. d) None of these.

177. 56 P dx + Q dy = 0 around every C is a closed path C in a simply continued region R then

a) a—P = Z—g if P .and Q are C* function.
b) 6—P =22 always.

ay ax'



. . oP 0Q
d) Nothing can be said about P and Fye

178. I=¢ (x+y)i+ (x —y)j, Where Cis the ellipse b*x* + a’y? = a*b* then I is
aymrab Db)O0. c)m(a+b) d) ab.

179. I = [ ydx+ xdy where Cis the path (t° sin®(/2));0 <t < 1 Then lis
a) 1 b) 0. ¢)-1. d) 7.

180. V f(x,y,2) = 2xyze* i + ze*'j + ye* k and £(0,0,0) = 5. Then f(1,1,1).
a) 5. b) e. C)e + 5. d)3e

181. fc ydx + xdy along every closed curve C is
a) 21 b) T c)m/2 d) None of these.

182. P =log(x?>+ 1) —2xe™,Q = x?e™ —log(y? + 1). Then
a) fcl Pdx + Qdy = fcz Pdx + Qdy for any two curves C1 & C, with same end points.

b) fC1 Pdx + Qdy = sz Pdx + Qdy for any two curves C; & C, by Green’s
theorem.

) fcl Pdx + Qdy # fCZ Pdx + Qdy for any two curves C1 & Ca.

d) None of these.

183. The equation x = u? — v%,y = 2uv,z = u? + v? represents
a) a cone. b) a sphere. c) a circle. d) a Cylinder .

184. Theequationx =rcosf, y =rsinf, z=4—1r? represents.
a) a cylinder. b) a sphere. c) a paraboloid. d) none of these.
185.  For the cylinder x = 3 cost, y =,z = 3sint at the point (3/+2, 1,3 /V2).
a) there is an unique unit normal vector.
b) there are two unit normal vectors.
c) there is no unit normal vector.
d) there are infinitely many unit normal vectors.

186. Theequationsx =u+v,y=u—-v,z=u?+v30<u<10<v<1.
a) a cone. b) a sphere. c) a paraboloid d) a Cylinder.

187. Theequation x =5cosf,y =5sinf,z=7;0 < 6 < 2m represents.
a) a straight line segment.  b) a plane. c) acircle d) a Cylinder.

188.  The surface integral of F(x,y) = —yi + xj on S where S is the disc in the XY plane with radius
2 oriented upwards and at the origin is
a) 1. b) -1. c)0. d) None of these.
189. The surface area of the triangle with vertices (1,0,0),(0,1,0)and (0,0, 1) is



a) /3. b) ? c) 2+/3. d) 2.

190. The surface integral of F(x,y,z) = x?i 4+ y?j — zk onthe triangle with vertices
(0,0,0), (0, 2, 0) and (0, 0, 3) is

a) 1. b) —1. c) 0. d) 1/2
191. The surface area of the sphere (x — a)? + (y — b)? + (z — ¢)? = r? is denoted by A. Then,
a) Adependsona,b,candr. b) A depends only on a, b, c.
c) adepends only onr. d) None of these.

192. Theequation x = u+ 2v,y = 2u — 3v,z = 3u + 4v describes.
a) a general plane. b) a plane passing through the origin.
c) aline in R3 d) none of these.

193.  The magnitude of the fundamental vector product % X % for surface
rw,v) =uw+v)i+ (u—v)i+4k is
(@) V4 + v2 (b) V4 + 128v2 (c) V4v2 +1 (d) None of these.

194. The parametric representation of cylinder x? + y2 =4, 0 < z < 1 is given by

a) x=2cosu, y=2sinv, z=u?+v? 0<u<2m 0<v<m.

b) x =2cosu, y=2sinu, z=u, 0<u < 2m.

C) x=2cosu, y=2sinu, z=2z, 0<u<2m 0<z<1.

d) None of the above.

195. The parameterization x = coshucosv, y = coshusinv, z = sin hu, where
0 <v<2m—o00 <u < oorepresents

a) an ellipsoid b) a hyperboloid of one sheet
c) acylinder d) None of these.

196. The fundamental vector product for the cone

x=rcosf, y=rsinf, z=r, 0<60<2m, 0<r<1is
a) (-rcosf, —rsinf, r) b) (rcos®, rsinf, r)
c) (-rcosf, rsinf, r) d) (rcos@, —rsin@, r)

197. The area of surface of revolution of the curve y = f(x) parameterized by
x=uy=f@)cosv, z=f(u)sinv, a<u<bh 0<v<2mis

a) [ If|J1+ (f'(w)? du
b) 2nf IfIlV1+ (' W)? du
) = [ fa)IT+FW)? du

d) None of these.

198. [, xdS where S is the triangle with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) is



>|%

a) V3 b)

~ |5

C) d) None of these.

199.  The flux of the vector field ¥ = %1 + y1 + zk across the unit sphere
x% + y? +z? = 1 equals
a) %” b) g” c) %” d) None of these.
200. LetF = P(x,y,2)i+ Q(x,v,2)] + R(x,y,z)k, where P, Q, R are continuously differentiable and
S is the surface given by z = g(x, ), (x,y) € D,then [, F. AdS is given by

ag ag ag ag
) [f, (P2+Q32+R)dxdy b) ff, (~P%2— Q%+ R)dxdy
) JI, (P Z—i +0Q Z—i — R) dxdy d) None of these.

201.  The centre of mass of a uniform hemispherical surface of radius a having parametric
representation #(u, v) = acosucosvi+ asinucosvj+ asinv k,
(u,v) € [0,2m] x [0,7r/2] is given by
2) (5,59 b) (0,0,%) ¢) (0,0,0) d) None of these.
202. The parameterized surface  (u, v) given by
X =Xx9+a,u+biv, y=y,+ au+ b,v,z=2z,+ azu + b3v represents
(where x, ¥o, Zo, a4, a5, as, by, b,, b5 are constants)

a) A sphere with centre (xo, o, Zo) b) a cylinder
c) an ellipsoid d) a plane

203. LetF(x,y,z) = ye?i + xe?j + xyeZk and S be the surface of unit sphere with outward normal
fi. Then [f; (V x F). 7 equals
(@) 4m (b) 12 (c) 16m (d)o

204. Let F(x,y,z) = 21 — %) — yk and C be the triangle with vertices (0, 0, 0), (0, 2, 0) and
(0,0,2). Then [. F.d7 equals
(@)1 (b) -1 (c) -2 (d)2

205. Let S denote an oriented smooth surface bounded by a closed curve C traversed
counterclockwise. Let 7 = %1 + 7} + yk. If A is a constant vector and 7 be the unit outward normal

to S. then ¢. (A X 7).dr equals
@ Jf; curl7.AdS (b) 0 ©2[f, Ands (d) None of these.

206. If Sisasphere and F is a vector field having continuous partial derivatives on an open region

containing S, then [f curl F.AdS where 1 is unit outward normal
(a) Depends on F (b) 47 (c) 2m (@O0



207. If V is a simple solid region whose boundary surface is S and 7 is a unit outward normal to S.

then for a harmonic function @ defined on a region containing S, ffs D@ 7AdS equals
(@) Volume of V (b) surface area of S ()0 (d) None of these.

208. If V is a simple solid region in R3 bounded by a smooth oriented surface S with @ as outward

unit normal. and 4'is a constant vector in R®, then [ A.7dS equals
@) 1Al (b) (surface area of S) ||A|| (c) (volume of V) ||A|| (@0

209. Let 7 be a unit outward normal to a closed surface S which bounds a homogeneous solid V. then

ffs (x? + y?) (xi + yj).7AdS equals
(@) |V|, the volume of V (b) |S], the surface area of S
(c) 41,, where I,, denote the moment of inertia about z-axis (d) None of these.

210. The flux of F(x,y,z) = x31 + ¥3j + y3k outward through unit sphere S is

121

(a) 41 (b) =" ©= (d) None of these.

211. If S; and S, are smooth oriented surfaces in R3 having same boundary C and F is a vector
field on R® then [f (V x F).7;dS = [[,(V x F).7,dS if and only if
(@) 7, =1, (b) A, = — 1, c)Sins;, =0 (d) None of these.

212.  Curl (grad (x + 2)) s

a) x2i4z%f. b) 0. c) 0 d) none of these.
213.  div (curl (x?,yz,sinz)) is
a) 2x+z+cosz b)0. c)0. d) none of these.

213. F(x,y,z) = (3xz, —5yz, z?) andcurl (pyz?,0,gxyz) = F. Then value of p and q are
a) —1&3 b) 1&—3 0)-1& -3  d)1&3.

214. Let C be the circle x? + y? = 4,z = —3 oriented counterclockwise. Let F = (y, xz3, —zy?) and
I=¢. F -dr Then

a) Stoke’s theorem is applicable and [ = —112m.

b) Stoke’s theorem is applicable to calculate /.

c) Stoke’s theorem is not applicable but [ = —112 7.
d) None of the above.

215.  The surface integral [ V x F. @i dS where F is continuously differentiable vector field and S is

a closed surface is
a) 0 b) depends on F c) depends on S d) none of these.



216. Thelineintegral f. 7 - d7 where C is a simple closed curve is
a)0 b) 1 c) depends on C d) none of these.

217. F(x,y,z2) = (y+zx+zx+y) Then

aycurl F=0=divF b) div F = 3 and curl F = 0.
¢)curl F=0and div F = 0. d) none of these.

218. I=[ff, (div ) dvwhereV isthe volume enclosed by a closed surface S. Then [ is
a) surface area of S b) volume V c) 0. d) None of these.

219. Thesurface integral [, F - A dS where F = L, 7 =xi+yj +zk over the surface of the

r3
sphere centered at (1, 1, 1) and radius 3 is
a)l. b) depends on r c) 0. d) None of these.

220.  The surface integral ff (7 -7) dS over a closed surface S with volume V' is
a)V b) 3V c) 0. d) None of these.

221. The surface integral ffs axi+ by j + czk.dS over the surface of a unit sphere enclosing a

volume V is
a)(a+b+c) 4r by (a+ b+ )V

¢) (a+b + c)4n? d)g(a+b+c)

222.  Thesurface integral [f, (x* +y?)i+ (y* +2%)j + (x* + z*)k where S is the cube
0<x<10<y<10<z<1 is

a) -3 b) 3 c)0 d) None of these.
223. If ¢ is a harmonic function and S is the unit sphere, then the surface integral
I, grad ¢ds
a) does not exist b)is 1
c) is the volume of the unit sphere d)is0

224.S is vertical cylinder of height 2, with its base a circle of radius 1 on the xy plane, centered
at the origin and S includes the disks that close it off top and bottom, then the surface

integer [[ yj equals
a)m b) 2r c)m/2 d) /4

225. The surface integral [f F. dS for a constant vector field F and S being a closed surface is
a) a non zero constant b) 0 C) never zero d) None of these

226. A vector field F is tangent to the boundary of a region S in space. Then [ff. div FaV,



a) dependson F and S.

b) 0

c) dependsonlyonS

d) Gauss Theorem not applicable.

227.  The result ff51 (VX F) -ndS = ffsz (V X F) - ndS where surfaces S; and S,.

have common boundary can be prove using

a) Only Gauss theorem and not by Stokes theorem
b) Only Stokes theorem and not by Gauss theorem
c) Neither from Stokes not from Gauss theorem
d) None of the above.



