Divide-and-Conquer Recurrences The Master Theorem

We assume a divide and conquer algorithm in which a problem with input size n is always divided into a subproblems, each with input size n / b. Here a and b are integer constants with $a \geq 1$ and $b>1$.

We assume n is a power of b, say $\boldsymbol{n}=\boldsymbol{b}^{\boldsymbol{k}}$.
Otherwise at some stage we will not be able to divide the subproblem size exactly by b.
However, the Master Theorem still holds if n is not a power of b, and the subproblem input sizes are $\lceil n / b\rceil$ or $\lfloor n / b\rfloor$
Note $\boldsymbol{k}=\boldsymbol{\operatorname { l o g }}_{b}(\boldsymbol{n})$.
The recurrence for the running time is:

$$
T(n)=a T(n / b)+f(n), \quad T(1)=\mathbf{d}
$$

Here $f(n)$ represents the divide and combine time (i.e., the nonrecursive time). $f(n)$ may involve Θ, e.g., $f(n)=\Theta\left(n^{2}\right)$.

We define $\boldsymbol{E}=\boldsymbol{\operatorname { l o g }}_{b}(\boldsymbol{a})$.
E is called the critical exponent. (It strongly influences the solution.) By definition, $\boldsymbol{b}^{E}=\boldsymbol{a}$.

Note that $\boldsymbol{a}^{\boldsymbol{k}}=\boldsymbol{n}^{E}$.

$$
\text { Why? } a^{k}=\left(b^{E}\right)^{k}=\left(b^{k}\right)^{E}=n^{E} \text {. }
$$

We can write down the total time to solve all sub-problems at a given depth in the recursion tree.

Depth of recursion	Size of sub- problems	Number of sub- problems	Total (non-recursive) time at this depth is roughly proportional to
0	n	1	$f(n)$
1	n / b	a	$a f(n / b)$
2	n / b^{2}	a^{2}	$a^{2} f\left(n / b^{2}\right)$
3	n / b^{3}	a^{3}	$a^{3} f\left(n / b^{3}\right)$
\vdots	\vdots	\vdots	\vdots
$k-2$	n / b^{k-2}	a^{k-2}	$a^{k-2} f\left(n / b^{k-2}\right)$
$k-1$	$n / b^{k-1}=b$	a^{k-1}	$a^{k-1} f\left(n / b^{k-1}\right)=\Theta\left(n^{E}\right)$
k	$n / b^{k}=1$	$a^{k}=n^{E}$	$a^{k} d=\mathrm{O}\left(n^{E}\right)$

$T(n)=$ sum of terms in rightmost column above

$$
=f(n)+a f(n / b)+a^{2} f\left(n / b^{2}\right)+\ldots+a^{k-1} f\left(n / b^{k-1}\right)+a^{k} d
$$

The critical functions in determining $T(n)$ are:
i) $\boldsymbol{f}(\boldsymbol{n})$ (the non-recursive time at depth 0)
ii) \boldsymbol{n}^{E} (the non-recursive time at depth k , or $k-1$).

Clearly: $T(n) \geq \Theta\left(\max \left(n^{E}, f(n)\right)\right)$.
On the other hand, if the terms in the right hand column of the table either increase as we move down, or decrease as we move down, then : $\quad T(n) \leq \Theta\left(\max \left(n^{E}, f(n)\right) \cdot \log _{b}(n)\right)$.

We will see that, if one of n^{E} and $f(n)$ grows much more rapidly than the other, then $T(n) \leq \Theta$ (more rapidly growing function).

Master Theorem:

$$
\begin{array}{|lll}
\hline \text { 1) } f(n) \text { in } O\left(n^{E-\delta}\right) \text { for fixed } \varepsilon>0 & \text { implies } & T(n)=\Theta\left(n^{E}\right) . \\
\text { 2) } f(n) \text { in } \Theta\left(n^{E}\right) & \text { implies } & T(n)=\Theta\left(n^{E} \log _{b}(n)\right) . \\
\text { 3) } f(n) \text { in } \Omega\left(n^{E+\varepsilon}\right) \text { for fixed } \varepsilon>0 & \text { implies } & T(n)=\Theta(f(n)) . \\
\hline
\end{array}
$$

Actually, (3) requires an additional hypothesis, that typically holds.

Note none of these cases may apply. For example, if $f(n)=n^{E} \log _{b}(n)$, we are between cases (2) and (3); neither case holds.

