
Divide–and–Conquer Recurrences —
The Master Theorem

We assume a divide and conquer algorithm in which a problem with
input size n is always divided into a subproblems, each with input
size n /b. Here a and b are integer constants with a ≥ 1 and b > 1.

We assume n is a power of b, say n = bk.

Otherwise at some stage we will not be able to divide the sub-
problem size exactly by b.

However, the Master Theorem still holds if n is not a power of b, and
the subproblem input sizes are n /b or n /b

Note k = logb(n).

The recurrence for the running time is:

 T(n) = aT(n /b) + f(n), T(1) = d .

Here f (n) represents the divide and combine time (i.e., the non-
recursive time). f (n) may involve Θ, e.g., f (n) = Θ(n2).

We define E = logb(a).

E is called the critical exponent. (It strongly influences the
solution.) By definition, bE = a.

Note that ak = nE.

Why? ak = (bE)k = (bk)E = nE.

We can write down the total time to solve all sub-problems at a
given depth in the recursion tree.

Depth of
recursion

Size
of sub-

problems

Number
of sub-

problems

Total (non-recursive)
time at this depth is

 roughly proportional to

0 n 1 f (n)

1 n/b a a f (n/b)

2 n/b2 a2 a2 f (n/b2)

3 n/b3 a3 a3 f (n/b3)
. . .

. . .
. . .

. . .

k–2 n/bk–2 ak–2 ak–2 f (n/bk–2)

k–1 n/bk–1 = b ak–1 ak–1 f (n/bk–1) = Θ(nE)

k n/bk = 1 ak = nE ak d = O(nE)

T(n) = sum of terms in rightmost column above

 = f (n) + a f (n/b) + a2 f (n/b2) + ... + ak–1 f (n/bk–1) + ak d

The critical functions in determining T(n) are:

 i) f (n) (the non-recursive time at depth 0)

 ii) nE (the non-recursive time at depth k, or k–1).

Clearly: T(n) ≥ Θ(max(nE, f (n))).

On the other hand, if the terms in the right hand column of the table
either increase as we move down, or decrease as we move down,
then : T(n) ≤ Θ(max(nE, f (n)) ⋅ logb(n)).

We will see that, if one of nE and f (n) grows much more rapidly
than the other, then T(n) ≤ Θ(more rapidly growing function).

Master Theorem:

1) f(n) in O(nE–ε) for fixed ε > 0 implies T(n) = Θ(nE).

2) f(n) in Θ(nE) implies T(n) = Θ(nE logb(n)).

3) f(n) in Ω(nE+ε) for fixed ε > 0 implies T(n) = Θ(f(n)) .

Actually, (3) requires an additional hypothesis, that typically holds.

Note none of these cases may apply. For example, if
f (n) = nE logb(n), we are between cases (2) and (3); neither case
holds.

